AuDI: Towards autonomous IoT device-type identification using periodic communications

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMarchal, Samuelen_US
dc.contributor.authorMiettinen, Markusen_US
dc.contributor.authorNguyen, Thien Ducen_US
dc.contributor.authorSadeghi, Ahmad-Rezaen_US
dc.contributor.authorAsokan, N.en_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof Asokan N. groupen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationTechnische Universität Darmstadten_US
dc.date.accessioned2019-09-03T13:44:54Z
dc.date.available2019-09-03T13:44:54Z
dc.date.issued2019-06-01en_US
dc.description.abstractIoT devices are being widely deployed. But the huge variance among them in the level of security and requirements for network resources makes it unfeasible to manage IoT networks using a common generic policy. One solution to this challenge is to define policies for classes of devices based on device type. In this paper, we present AuDI, a system for quickly and effectively identifying the type of a device in an IoT network by analyzing their network communications. AuDI models the periodic communication traffic of IoT devices using an unsupervised learning method to perform identification. In contrast to prior work, AuDI operates autonomously after initial setup, learning, without human intervention nor labeled data, to identify previously unseen device types. AuDI can identify the type of a device in any mode of operation or stage of lifecycle of the device. Via systematic experiments using 33 off-the-shelf IoT devices, we show that AuDI is effective (98.2% accuracy).en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.extent1402-1412
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMarchal, S, Miettinen, M, Nguyen, T D, Sadeghi, A-R & Asokan, N 2019, ' AuDI: Towards autonomous IoT device-type identification using periodic communications ', IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, 8664655, pp. 1402-1412 . https://doi.org/10.1109/JSAC.2019.2904364en
dc.identifier.doi10.1109/JSAC.2019.2904364en_US
dc.identifier.issn0733-8716
dc.identifier.issn1558-0008
dc.identifier.otherPURE UUID: 4aa54e18-407e-4086-bb6f-b0141c536d3cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4aa54e18-407e-4086-bb6f-b0141c536d3cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85065882414&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: http://tuprints.ulb.tu-darmstadt.de/8511/en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/32146255/AuDI_Aalto.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/40046
dc.identifier.urnURN:NBN:fi:aalto-201909035088
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.ispartofseriesIEEE Journal on Selected Areas in Communicationsen
dc.relation.ispartofseriesVolume 37, issue 6en
dc.rightsopenAccessen
dc.subject.keywordInternet of Thingsen_US
dc.subject.keyworddevice-type identificationen_US
dc.subject.keywordautonomous IoT device identificationen_US
dc.subject.keywordself-learningen_US
dc.titleAuDI: Towards autonomous IoT device-type identification using periodic communicationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files