A geospatial approach for dynamic on-road emission through open-access floating car data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorFung, Pak Lun
dc.contributor.authorAl-Jaghbeer, Omar
dc.contributor.authorChen, Jia
dc.contributor.authorPaunu, Ville-Veikko
dc.contributor.authorVosough, Shaghayegh
dc.contributor.authorRoncoli, Claudio
dc.contributor.authorJärvi, Leena
dc.contributor.departmentDepartment of Built Environmenten
dc.contributor.groupauthorPlanning and Transportationen
dc.contributor.organizationUniversity of Helsinki
dc.contributor.organizationTechnical University of Munich
dc.contributor.organizationFinnish Environment Institute
dc.date.accessioned2025-02-05T06:29:16Z
dc.date.available2025-02-05T06:29:16Z
dc.date.issued2025-01-01
dc.description.abstractThis paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2), nitrogen oxides (NO x), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness and accuracy of the methods, we showcased results for summer workdays and winter weekends in the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic density with satisfactory accuracy (R 2 = 0.60-0.88, sMAPE = 31%-68%). Utilizing speed-dependent emission factors retrieved from a European database, the results compared favorably against the downscaled national emission inventory, particularly for CO 2 (R 2 = 0.70-0.77). Among the three methods, GLM exhibited the best overall performance in the HMA, while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation transformation, we calculated emission changes under scenarios with various penetration rates of connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of CAVs could result in emission reductions of 3%-14% owing to congestion improvements.en
dc.description.versionPeer revieweden
dc.format.extent29
dc.format.mimetypeapplication/pdf
dc.identifier.citationFung, P L, Al-Jaghbeer, O, Chen, J, Paunu, V-V, Vosough, S, Roncoli, C & Järvi, L 2025, 'A geospatial approach for dynamic on-road emission through open-access floating car data', Environmental Research Letters, vol. 20, no. 1, 014033. https://doi.org/10.1088/1748-9326/ad984den
dc.identifier.doi10.1088/1748-9326/ad984d
dc.identifier.issn1748-9326
dc.identifier.otherPURE UUID: 3de6120f-1bf5-4759-b131-6d832f23b22d
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3de6120f-1bf5-4759-b131-6d832f23b22d
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85219651770&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/172570624/Fung_2025_Environ._Res._Lett._20_014033.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/134007
dc.identifier.urnURN:NBN:fi:aalto-202502052289
dc.language.isoenen
dc.publisherInstitute of Physics Publishing
dc.relation.ispartofseriesEnvironmental Research Lettersen
dc.relation.ispartofseriesVolume 20, issue 1en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordAIR POLLUTION
dc.subject.keywordCLIMATE CHANGE
dc.subject.keywordCONGESTION
dc.subject.keywordGIS
dc.subject.keywordOPEN-ACCESS
dc.subject.keywordSPATIAL ANALYSIS
dc.subject.keywordTRAFFIC EMISSION
dc.subject.keywordtraffic emission
dc.subject.keywordopen-access
dc.subject.keywordspatial analysis
dc.subject.keywordair pollution
dc.subject.keywordcongestion
dc.subject.keywordclimate change
dc.titleA geospatial approach for dynamic on-road emission through open-access floating car dataen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files