Polymer translocation through a nanopore: a two-dimensional Monte Carlo study
Loading...
Access rights
© 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. http://scitation.aip.org/content/aip/journal/jcp
Final published version
URL
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
034714/1-5
Series
The Journal of Chemical Physics, Volume 124, Issue 3
Abstract
We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore and study the escape time τ required for the polymer to completely exit the pore on either end. We find numerically that τ scales with the chain length N as τ∼N1+2ν, where ν is the Flory exponent. This is the same scaling as predicted for the translocation time of a polymer which passes through the nanopore in one direction only. We examine the interplay between the pore length L and the radius of gyration Rg. For L⪡Rg, we numerically verify that asymptotically τ∼N1+2ν. For L⪢Rg, we find τ∼N. In addition, we numerically find the scaling function describing crossover between short and long pores. We also show that τ has a minimum as a function of L for longer chains when the radius of gyration along the pore direction R‖≈L. Finally, we demonstrate that the stiffness of the polymer does not change the scaling behavior of translocation dynamics for single-segment dynamics.Description
Keywords
Other note
Citation
Luo, K. & Ala-Nissilä, Tapio & Ying, S. C. 2006. Polymer translocation through a nanopore: a two-dimensional Monte Carlo study. The Journal of Chemical Physics. Volume 124, Issue 3. 034714/1-5. 1089-7690 (electronic). 0021-9606 (printed). DOI: 10.1063/1.2161189.