Five-Dimensional Sentiment Analysis of Corpora, Documents and Words

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHonkela, Timoen_US
dc.contributor.authorKorhonen, Jaakkoen_US
dc.contributor.authorLagus, Kristaen_US
dc.contributor.authorSaarinen, Esaen_US
dc.contributor.departmentTietojenkäsittelytieteen laitoen
dc.contributor.departmentDepartment of Industrial Engineering and Managementen
dc.date.accessioned2019-06-03T14:12:23Z
dc.date.available2019-06-03T14:12:23Z
dc.date.issued2014en_US
dc.description.abstractSentiment analysis has become a widely used approach to assess the emotional content of written documents such as customer feedback. In positive psychology research, the typical one-dimensional analysis framework has been extended to include five dimensions. This five-dimensional model, PERMA, enables a fine-grained analysis of written texts. We propose an approach in which this model, statistical analysis and the self-organizing map are used. We analyze corpora from various genres. A hybrid methodology that uses the self-organizing maps algorithm and human judgment is suggested for expanding the PERMA lexicon. This vocabulary expansion can be useful for English but it is potentially even more crucial in the case of other languages for which the lexicon is not readily available. The challenges and solutions related to the text mining of texts written in a morphologically complex language such as Finnish are also considered.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHonkela, T, Korhonen, J, Lagus, K & Saarinen, E 2014, Five-Dimensional Sentiment Analysis of Corpora, Documents and Words. in Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, WSOM 2014. Advances in Intelligent Systems and Computing, vol. 295, Springer, pp. 209-218, Workshop on Self-Organizing Maps, Mittweida, Germany, 02/07/2014. https://doi.org/10.1007/978-3-319-07695-9_20en
dc.identifier.doi10.1007/978-3-319-07695-9_20en_US
dc.identifier.isbn9783319076942
dc.identifier.issn21945357
dc.identifier.otherPURE UUID: 4f14ec40-d6af-422d-b294-e05700691a22en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4f14ec40-d6af-422d-b294-e05700691a22en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84903549586&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/33633842/Honkela14perma.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/38254
dc.identifier.urnURN:NBN:fi:aalto-201906033339
dc.language.isoenen
dc.relation.ispartofWorkshop on Self-Organizing Mapsen
dc.relation.ispartofINTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPSfin
dc.relation.ispartofseriesAdvances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, WSOM 2014en
dc.relation.ispartofseriespp. 209-218en
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing ; Volume 295en
dc.rightsopenAccessen
dc.subject.keywordeducationen_US
dc.subject.keywordindependent component analysisen_US
dc.subject.keywordlife-philosophical lecturingen_US
dc.subject.keywordnatural language processingen_US
dc.subject.keywordpositive psychologyen_US
dc.subject.keywordself-organizing mapen_US
dc.subject.keywordText miningen_US
dc.titleFive-Dimensional Sentiment Analysis of Corpora, Documents and Wordsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files