Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism

No Thumbnail Available
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2021-03-25
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Advanced Materials
Abstract
Doping of materials beyond the dopant solubility limit remains a challenge, especially when spatially nonuniform doping is required. In 2D materials with a high surface-to-volume ratio, such as transition metal dichalcogenides, various post-synthesis approaches to doping have been demonstrated, but full control over spatial distribution of dopants remains a challenge. A post-growth doping of single layers of WSe2 is performed by adding transition metal (TM) atoms in a two-step process, which includes annealing followed by deposition of dopants together with Se or S. The Ti, V, Cr, and Fe impurities at W sites are identified by using transmission electron microscopy and electron energy loss spectroscopy. Remarkably, an extremely high density (6.4–15%) of various types of impurity atoms is achieved. The dopants are revealed to be largely confined within nanostripes embedded in the otherwise pristine WSe2. Density functional theory calculations show that the dislocations assist the incorporation of the dopant during their climb and give rise to stripes of TM dopant atoms. This work demonstrates a possible spatially controllable doping strategy to achieve the desired local electronic, magnetic, and optical properties in 2D materials.
Description
Keywords
dislocation migration, doping, nanostripes, transition metal dichalcogenides
Other note
Citation
Lin, Y C, Karthikeyan, J, Chang, Y P, Li, S, Kretschmer, S, Komsa, H P, Chiu, P W, Krasheninnikov, A V & Suenaga, K 2021, ' Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism ', Advanced Materials, vol. 33, no. 12, 2007819 . https://doi.org/10.1002/adma.202007819