Dynamical configuration interaction: Quantum embedding that combines wave functions and Green's functions

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2019-03-25
Major/Subject
Mcode
Degree programme
Language
en
Pages
24
1-24
Series
Physical Review B, Volume 99, issue 11
Abstract
We present the concept, derivation, and implementation of dynamical configuration interaction, a quantum embedding theory that combines Green's function methodology with the many-body wave function. In a strongly correlated active space, we use full configuration interaction (CI) to describe static correlation exactly. We add energy-dependent corrections to the CI Hamiltonian which, in principle, include all remaining correlations derived from the bath space surrounding the active space. Next, we replace the exact Hamiltonian in the bath with one of excitations defined over a correlated ground state. This transformation is naturally suited to the methodology of many-body Green's functions. In this space, we use a modified GW/Bethe-Salpeter equation procedure to calculate excitation energies. Combined with an estimate of the ground-state energy in the bath, we can efficiently compute the energy-dependent corrections, which correlate the full set of orbitals, for very low computational cost. We present dimer dissociation curves for H-2 and N-2 in good agreement with exact results. Additionally, excited states of N-2 and C-2 are in excellent agreement with benchmark theory and experiment. By combining the strengths of two disciplines, we achieve a balanced description of static and dynamic correlation in a fully ab initio, systematically improvable framework.
Description
Keywords
SELF-CONSISTENT-FIELD, BETHE-SALPETER-EQUATION, PERTURBATION-THEORY, OPTICAL-SPECTRA, ELECTRON, DENSITY, STATE, GW, BENCHMARKING, EXCITATIONS
Other note
Citation
Dvorak, M & Rinke, P 2019, ' Dynamical configuration interaction : Quantum embedding that combines wave functions and Green's functions ', Physical Review B, vol. 99, no. 11, 115134, pp. 1-24 . https://doi.org/10.1103/PhysRevB.99.115134