Gold nanocrystal-mediated sliding of doublet DNA origami filaments
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Urban, Maximilian J. | en_US |
dc.contributor.author | Both, Steffen | en_US |
dc.contributor.author | Kuzyk, Anton | en_US |
dc.contributor.author | Lindfors, Klas | en_US |
dc.contributor.author | Weiss, Thomas | en_US |
dc.contributor.author | Liu, Na | en_US |
dc.contributor.department | Department of Neuroscience and Biomedical Engineering | en |
dc.contributor.organization | Max Planck Institute for Intelligent Systems | en_US |
dc.contributor.organization | University of Stuttgart | en_US |
dc.contributor.organization | University of Cologne | en_US |
dc.date.accessioned | 2018-05-22T14:54:22Z | |
dc.date.available | 2018-05-22T14:54:22Z | |
dc.date.issued | 2018 | en_US |
dc.description.abstract | Sliding is one of the fundamental mechanical movements in machinery. In macroscopic systems, double-rack pinion machines employ gears to slide two linear tracks along opposite directions. In microscopic systems, kinesin-5 proteins crosslink and slide apart antiparallel microtubules, promoting spindle bipolarity and elongation during mitosis. Here we demonstrate an artificial nanoscopic analog, in which gold nanocrystals can mediate coordinated sliding of two antiparallel DNA origami filaments powered by DNA fuels. Stepwise and reversible sliding along opposite directions is in situ monitored and confirmed using fluorescence spectroscopy. A theoretical model including different energy transfer mechanisms is developed to understand the observed fluorescence dynamics. We further show that such sliding can also take place in the presence of multiple DNA sidelocks that are introduced to inhibit the relative movements. Our work enriches the toolbox of DNA-based nanomachinery, taking one step further toward the vision of molecular nanofactories. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1-7 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Urban, M J, Both, S, Kuzyk, A, Lindfors, K, Weiss, T & Liu, N 2018, ' Gold nanocrystal-mediated sliding of doublet DNA origami filaments ', Nature Communications, vol. 9, no. 1, 1454, pp. 1-7 . https://doi.org/10.1038/s41467-018-03882-w | en |
dc.identifier.doi | 10.1038/s41467-018-03882-w | en_US |
dc.identifier.issn | 2041-1723 | |
dc.identifier.other | PURE UUID: ff4ca5ba-b15d-484e-8b4a-e2110519e97f | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/ff4ca5ba-b15d-484e-8b4a-e2110519e97f | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/18916948/s41467_018_03882_w.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/31296 | |
dc.identifier.urn | URN:NBN:fi:aalto-201805222736 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | NATURE COMMUNICATIONS | en |
dc.relation.ispartofseries | Volume 9, issue 1 | en |
dc.rights | openAccess | en |
dc.title | Gold nanocrystal-mediated sliding of doublet DNA origami filaments | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |