Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils

dc.contributorAalto Universityen
dc.contributor.authorWang, Lingen_US
dc.contributor.authorBorghei, Maryamen_US
dc.contributor.authorIshfaq, Amalen_US
dc.contributor.authorLahtinen, Panuen_US
dc.contributor.authorAgo, Marikoen_US
dc.contributor.authorPapageorgiou, Anastassios C.en_US
dc.contributor.authorLundahl, Meri J.en_US
dc.contributor.authorJohansson, Leena Siskoen_US
dc.contributor.authorKallio, Tanjaen_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.contributor.groupauthorElectrochemical Energy Conversionen
dc.contributor.organizationDepartment of Bioproducts and Biosystemsen_US
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.contributor.organizationUniversity of Turkuen_US
dc.contributor.organizationMeisei Universityen_US
dc.description* Ack:ssa mutta ei silti mukaan raportointiin | openaire: EC/H2020/788489/EU//BioELCell
dc.description.abstractThe growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm-1). The incorporation of anionic cellulose nanofibrils (TOCNF) enhanced the spinnability and the porous morphology of the carbon microfibers, making them suitable platforms for electrochemical double layer capacitance (EDLC). The increased loading of LCNF in the spinning dope resulted in carbon microfibers of enhanced carbon yield and conductivity. Meanwhile, TOCNF influenced the pore evolution and specific surface area after carbonization, which significantly improved the electrochemical double layer capacitance. When the carbon microfibers were directly applied as fiber-shaped supercapacitors (25 F cm-3), they displayed a remarkably long-term electrochemical stability (>93% of the initial capacitance after 10 000 cycles). Solid-state symmetric fiber supercapacitors were assembled using a PVA/H2SO4 gel electrolyte and resulted in an energy and power density of 0.25 mW h cm-3 and 65.1 mW cm-3, respectively. Overall, the results indicate a green and facile route to convert wood into carbon microfibers suitable for integration in wearables and energy storage devices and for potential applications in the field of bioelectronics.en
dc.description.versionPeer revieweden
dc.identifier.citationWang, L, Borghei, M, Ishfaq, A, Lahtinen, P, Ago, M, Papageorgiou, A C, Lundahl, M J, Johansson, L S, Kallio, T & Rojas, O J 2020, ' Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils ', ACS Sustainable Chemistry and Engineering, vol. 8, no. 23, pp. 8549-8561 .
dc.identifier.otherPURE UUID: 4ec6c5d6-0cbb-4313-8a58-9d37c8eedfb9en_US
dc.identifier.otherPURE ITEMURL:
dc.identifier.otherPURE LINK:
dc.identifier.otherPURE FILEURL:
dc.relation.ispartofseriesACS Sustainable Chemistry and Engineeringen
dc.relation.ispartofseriesVolume 8, issue 23en
dc.subject.keywordCarbon fibersen_US
dc.subject.keywordWet spinningen_US
dc.titleMesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrilsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi