Supporting strategy selection in multiobjective decision problems under uncertainty and hidden requirements

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNeuvonen, Laurien_US
dc.contributor.authorWildemeersch, Matthiasen_US
dc.contributor.authorVilkkumaa, Eevaen_US
dc.contributor.departmentDepartment of Information and Service Managementen
dc.contributor.organizationInternational Institute for Applied Systems Analysis (IIASA)en_US
dc.date.accessioned2023-02-08T07:36:22Z
dc.date.available2023-02-08T07:36:22Z
dc.date.issued2023-05-16en_US
dc.description.abstractDecision-makers are often faced with multi-faceted problems that require making trade-offs between multiple, conflicting objectives under various uncertainties. The task is even more difficult when considering dynamic, non-linear processes and when the decisions themselves are complex, for instance in the case of selecting trajectories for multiple decision variables. These types of problems are often solved using multiobjective optimization (MOO). A typical problem in MOO is that the number of Pareto optimal solutions can be very large, whereby the selection process of a single preferred solution is cumbersome. Moreover, preference between model-based solutions may not be determined only by their objective function values, but also in terms of how robust and implementable these solutions are. In this paper, we develop a methodological framework to support the identification of a small but diverse set of robust Pareto optimal solutions. In particular, we eliminate non-robust solutions from the Pareto front and cluster the remaining solutions based on their similarity in the decision variable space. This enables a manageable visual inspection of the remaining solutions to compare them in terms of practical implementability. We illustrate the framework and its benefits by means of an epidemic control problem that minimizes deaths and economic impacts, and a screening program for colorectal cancer that minimizes cancer prevalence and costs. These examples highlight the general applicability of the framework for disparate types of decision problems and process models.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNeuvonen, L, Wildemeersch, M & Vilkkumaa, E 2023, 'Supporting strategy selection in multiobjective decision problems under uncertainty and hidden requirements', European Journal of Operational Research, vol. 307, no. 1, pp. 279-293. https://doi.org/10.1016/j.ejor.2022.09.036en
dc.identifier.doi10.1016/j.ejor.2022.09.036en_US
dc.identifier.issn0377-2217
dc.identifier.issn1872-6860
dc.identifier.otherPURE UUID: 6c551dca-30c9-4e43-8ecc-fb52765cf7dcen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6c551dca-30c9-4e43-8ecc-fb52765cf7dcen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85140712082&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://www.sciencedirect.com/science/article/pii/S0377221722007652en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/99555267/Supporting_strategy_selection_in_multiobjective_decision_problems_under_uncertainty_and_hidden_requirements.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119684
dc.identifier.urnURN:NBN:fi:aalto-202302082034
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesEuropean Journal of Operational Researchen
dc.relation.ispartofseriesVolume 307, issue 1, pp. 279-293en
dc.rightsopenAccessen
dc.subject.keywordDecision support systemsen_US
dc.subject.keywordMultiobjective optimizationen_US
dc.subject.keywordRobustnessen_US
dc.subject.keywordPruningen_US
dc.subject.keywordImplementabilityen_US
dc.titleSupporting strategy selection in multiobjective decision problems under uncertainty and hidden requirementsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files