Image Based Indoor Navigation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorXiao, Yu
dc.contributor.authorNoreikis, Marius
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorYlä-Jääski, Antti
dc.contributor.supervisorSodin, Peter
dc.date.accessioned2014-09-25T08:35:55Z
dc.date.available2014-09-25T08:35:55Z
dc.date.issued2014
dc.description.abstractOver the last years researchers proposed numerous indoor localization and navigation systems. However, solutions that use WiFi or Radio Frequency Identification require infrastructure to be deployed in the navigation area and infrastructure less techniques, e.g. the ones based on mobile cell ID or dead reckoning suffer from large accuracy errors. In this Thesis, we present a novel approach of infrastructure-less indoor navigation system based on computer vision Structure from Motion techniques. We implemented a prototype localization and navigation system which can build a navigation map using area photos as input and accurately locate a user in the map. In our client-server architecture based system, a client is a mobile application, which allows a user to locate her or his position by simply taking a photo. The server handles map creation, localization queries and path finding. After the implementation, we evaluated the localization accuracy and latency of the system by benchmarking navigation queries and the model creation algorithm. The system is capable of successfully navigating in Aalto University computer science department library. We were able to achieve an average error of 0.26 metres for successfully localised photos. In the Thesis, we also present challenges that we solved to adapt computer vision techniques for localisation purposes. Finally we observe the possible future work topics to adapt the system to a wide use.en
dc.format.extent87 s.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/14046
dc.identifier.urnURN:NBN:fi:aalto-201409252674
dc.language.isoenen
dc.programme.majorTietokoneverkotfi
dc.programme.mcodeT-110
dc.rights.accesslevelopenAccess
dc.subject.keywordnavigationen
dc.subject.keywordstructure from motionen
dc.subject.keywordpoint cloudsen
dc.subject.keywordfeature extractionen
dc.subject.keywordindoor localisationen
dc.subject.keywordnavigation meshen
dc.subject.keywordpathndingen
dc.titleImage Based Indoor Navigationen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.dcmitypetexten
dc.type.okmG2 Pro gradu, diplomityö
dc.type.ontasotDiplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.publicationmasterThesis
local.aalto.digifolderAalto_07050
local.aalto.idinssi49704
local.aalto.openaccessyes

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_noreikis_marius_2014.pdf
Size:
6.26 MB
Format:
Adobe Portable Document Format