Identifiable Causal Inference with Noisy Treatment and No Side Information

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPöllänen, Anttien_US
dc.contributor.authorMarttinen, Pekkaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.date.accessioned2024-12-17T16:16:06Z
dc.date.available2024-12-17T16:16:06Z
dc.date.issued2024-09en_US
dc.description| openaire: EC/H2020/101016775/EU//INTERVENE
dc.description.abstractIn some causal inference scenarios, the treatment variable is measured inaccurately, for instance in epidemiology or econometrics. Failure to correct for the effect of this measurement error can lead to biased causal effect estimates. Previous research has not studied methods that address this issue from a causal viewpoint while allowing for complex nonlinear dependencies and without assuming access to side information. For such a scenario, this study proposes a model that assumes a continuous treatment variable that is inaccurately measured. Building on existing results for measurement error models, we prove that our model's causal effect estimates are identifiable, even without side information and knowledge of the measurement error variance. Our method relies on a deep latent variable model in which Gaussian conditionals are parameterized by neural networks, and we develop an amortized importance-weighted variational objective for training the model. Empirical results demonstrate the method's good performance with unknown measurement error. More broadly, our work extends the range of applications in which reliable causal inference can be conducted.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPöllänen, A & Marttinen, P 2024, 'Identifiable Causal Inference with Noisy Treatment and No Side Information', Transactions on Machine Learning Research, vol. 2024, no. 9. < https://openreview.net/forum?id=E0NPcsEZ2f >en
dc.identifier.issn2835-8856
dc.identifier.otherPURE UUID: 1494f165-e598-437d-ae92-44d2f2721649en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1494f165-e598-437d-ae92-44d2f2721649en_US
dc.identifier.otherPURE LINK: https://openreview.net/forum?id=E0NPcsEZ2fen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/167392246/Identifiable_Causal_Inference_with_Noisy_Treatment_and_No_Side_Information.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132374
dc.identifier.urnURN:NBN:fi:aalto-202412177851
dc.language.isoenen
dc.publisherTransactions on Machine Learning Research
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENEen_US
dc.relation.ispartofseriesTransactions on Machine Learning Researchen
dc.relation.ispartofseriesVolume 2024, issue 9en
dc.rightsopenAccessen
dc.rightsCC BYen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIdentifiable Causal Inference with Noisy Treatment and No Side Informationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files