Ultra-thin insulating layers of hexagonal boron nitride for high-resolution scanning tunneling spectroscopy

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
School of Science | Doctoral thesis (article-based) | Defence date: 2016-09-16
Date
2016
Major/Subject
Mcode
Degree programme
Language
en
Pages
56 + app. 38
Series
Aalto University publication series DOCTORAL DISSERTATIONS, 163/2016
Abstract
Scanning tunneling spectroscopy (STS) allows for probing the local density of states of surfaces and adsorbates with atomic spatial resolution. When molecules or other nanostructures are electronically decoupled from the surface, STS can be interpreted in terms of the electronic structure of the isolated adsorbate. Ultra-thin insulating layers of metal oxides or alkali halides are commonly used to decouple single molecules and atoms. This thesis explores the possibilities of an alternative decoupling material: hexagonal boron nitride (h-BN).  We start by investigating the atomic-scale structure and electronic properties of an h-BN monolayer on Ir(111) and find that it is characterized by a moiré superstructure with a work function modulation of approx. 0.5 eV. Subsequent STS experiments on molecules deposited onto the h-BN/Ir(111) system indicate their efficient decoupling from the metallic substrate and local charging through the h-BN work function modulation. Comparing molecules in different charge states, we go beyond the prevalent single-particle picture when interpreting STS on molecules and explain the observed resonances as a series of many-body excited states. Finally, we utilize h-BN covalently attached to graphene (G) islands to decouple the G edges from the metallic substrate. This gives rise to an electronic state at the h-BN/G interface, which closely resembles the edge state theoretically predicted for pristine graphene edges.  The work presented in this thesis opens new avenues for high-resolution STS on molecular systems using h-BN as an ultra-thin insulating layer.
Description
Supervising professor
Liljeroth, Peter, Prof., Aalto University, Department of Applied Physics, Finland
Keywords
scanning tunneling microscopy, tunneling spectroscopy, self-assembly, single molecules, hexagonal boron nitride, graphene
Other note
Parts
  • [Publication 1]: Fabian Schulz, Robert Drost, Sampsa K. Hämäläinen, Thomas Demonchaux, Ari P. Seitsonen and Peter Liljeroth. Epitaxial hexagonal boron nitride on Ir(111): A work function template. Physical Review B 78, 235429, 2014.
    DOI: 10.1103/PhysRevB.89.235429 View at publisher
  • [Publication 2]: Fabian Schulz, Robert Drost, Sampsa K. Hämäläinen and Peter Liljeroth. Templated self-assembly and local doping of molecules on epitaxial hexagonal boron nitride. ACS Nano 7, 11121-11128, 2013.
    DOI: 10.1021/nn404840h View at publisher
  • [Publication 3]: Fabian Schulz, Mari Ijäs, Robert Drost, Sampsa K. Hämäläinen, Ari Harju, Ari P. Seitsonen and Peter Liljeroth. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nature Physics 11, 229-234, 2015.
    DOI: 10.1038/nphys3212 View at publisher
  • [Publication 4]: Robert Drost, Andreas Uppstu, Fabian Schulz, Sampsa K. Hämäläinen, Mikko Ervasti, Ari Harju and Peter Liljeroth. Electronic States at the graphene-hexagonal boron nitride zigzag interface. Nano Letters 14, 5128-5132, 2014.
    DOI: 10.1021/nl501895h View at publisher
Citation