Generalized Lebesgue Points for Hajłasz Functions

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2018-01-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

12

Series

Journal of Function Spaces, Volume 2018

Abstract

Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function uṀs,X. Moreover, if αX<(Q+s)/Q, then quasievery point is a Lebesgue point of u. As an application we obtain Lebesgue type theorems for Lorentz-Hajłasz, Orlicz-Hajłasz, and variable exponent Hajłasz functions.

Description

Keywords

Other note

Citation

Heikkinen, T 2018, ' Generalized Lebesgue Points for Hajłasz Functions ', Journal of Function Spaces, vol. 2018, 5637042 . https://doi.org/10.1155/2018/5637042