Generalized Lebesgue Points for Hajłasz Functions
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2018-01-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Journal of Function Spaces, Volume 2018
Abstract
Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function uṀs,X. Moreover, if αX<(Q+s)/Q, then quasievery point is a Lebesgue point of u. As an application we obtain Lebesgue type theorems for Lorentz-Hajłasz, Orlicz-Hajłasz, and variable exponent Hajłasz functions.Description
Keywords
Other note
Citation
Heikkinen, T 2018, ' Generalized Lebesgue Points for Hajłasz Functions ', Journal of Function Spaces, vol. 2018, 5637042 . https://doi.org/10.1155/2018/5637042