Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces I : Ap-dimensions of matrix weights and φ-transform characterizations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBu, Fan
dc.contributor.authorHytönen, Tuomas
dc.contributor.authorYang, Dachun
dc.contributor.authorYuan, Wen
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorAnalysisen
dc.contributor.organizationBeijing Normal University
dc.date.accessioned2025-02-12T06:25:24Z
dc.date.available2025-02-12T06:25:24Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2026-01-03
dc.date.issued2025-04
dc.descriptionPublisher Copyright: © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
dc.description.abstractLet s∈R, q∈(0,∞], and τ∈[0,∞). It is well known that Besov-type spaces B˙p,qs,τ with p∈(0,∞] and Triebel–Lizorkin-type spaces F˙p,qs,τ with p∈(0,∞) when τ∈[0,∞) or with p∈(0,∞] when τ=0 on Rn consist of a general family of function spaces that cover not only the well-known Besov and Triebel–Lizorkin spaces B˙p,qs and F˙p,qs (when τ=0) but also several other function spaces of interest, such as Morrey spaces and Q spaces. In three successive articles, the authors develop a complete real-variable theory of matrix-weighted Besov-type spaces B˙p,qs,τ(W) and matrix-weighted Triebel–Lizorkin-type spaces F˙p,qs,τ(W) on Rn, where W is a matrix-valued Muckenhoupt Ap weight. This article is the first one, whose main novelty exists in that the authors introduce the new concept, Ap-dimensions of matrix weights, and intensively study their properties, especially those elaborate properties expressed via reducing operators. The authors then introduce the spaces B˙p,qs,τ(W) and F˙p,qs,τ(W) and, using Ap-dimensions and their nice properties, the authors establish the φ-transform characterization of B˙p,qs,τ(W) and F˙p,qs,τ(W). The Ap-dimensions of matrix weights and their properties also enable the authors to obtain the sharp boundedness of almost diagonal operators on related sequence spaces in the subsequent second article and the optimal characterizations of molecules and wavelets, trace theorems, and the optimal boundedness of pseudo-differential operators and Calderón–Zygmund operators in the subsequent third article.en
dc.description.versionPeer revieweden
dc.format.extent81
dc.identifier.citationBu, F, Hytönen, T, Yang, D & Yuan, W 2025, 'Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces I : Ap-dimensions of matrix weights and φ-transform characterizations', Mathematische Annalen, vol. 391, no. 4, pp. 6105-6185. https://doi.org/10.1007/s00208-024-03059-5en
dc.identifier.doi10.1007/s00208-024-03059-5
dc.identifier.issn0025-5831
dc.identifier.issn1432-1807
dc.identifier.otherPURE UUID: 5a01707d-0c4e-438a-b62d-59aec5f5d03c
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5a01707d-0c4e-438a-b62d-59aec5f5d03c
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85213941619&partnerID=8YFLogxK
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/134123
dc.identifier.urnURN:NBN:fi:aalto-202502122402
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesMathematische Annalenen
dc.relation.ispartofseriesVolume 391, issue 4, pp. 6105-6185en
dc.rightsembargoedAccessen
dc.titleMatrix-weighted Besov-type and Triebel–Lizorkin-type spaces I : Ap-dimensions of matrix weights and φ-transform characterizationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files