Scalability of a Machine Learning Environment for Autonomous Driving Research

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDebner, Antonen_US
dc.contributor.authorHyyppä, Matiasen_US
dc.contributor.authorHanhirova, Jussien_US
dc.contributor.authorHirvisalo, Vesaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorHeljanko Keijo groupen
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2020-02-28T09:29:24Z
dc.date.available2020-02-28T09:29:24Z
dc.date.issued2019en_US
dc.description.abstractWe study scalability of machine learning environments in the context of mixed collaborative driving. Mixed collaborative driving includes both human controlled vehicles and vehicles controlled by AI (Artificial Intelligence) that share the physical road resources (e.g., intersections and roundabouts). Many such driving situations cannot be easily created nor replicated in the real life. Therefore, development and testing of AI systems is often done with simulators. Machine learning environments must maintain a real-time understanding of their traffic situation. Scaling of the machine learning environment to multiple distributed nodes is required to support larger number of participating vehicles. Our experimental environment consists of the CARLA simulator, custom AI implemented with the TensorFlow framework, and a corner casesearch subsystem. With the corner case search subsystem we can automatically evaluate the AI in different driving scenarios. In this paper, we present how scaling of the envinronment tomultiple distributed nodes affects its performance.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDebner, A, Hyyppä, M, Hanhirova, J & Hirvisalo, V 2019, Scalability of a Machine Learning Environment for Autonomous Driving Research. in Proceedings - 2019 IEEE 17th International Conference on Industrial Informatics, INDIN 2019., 8972278, IEEE International Conference on Industrial Informatics (INDIN), IEEE, pp. 687-692, IEEE International Conference on Industrial Informatics, Helsinki and Espoo, Finland, 22/07/2019. https://doi.org/10.1109/INDIN41052.2019.8972278en
dc.identifier.doi10.1109/INDIN41052.2019.8972278en_US
dc.identifier.isbn9781728129273
dc.identifier.issn1935-4576
dc.identifier.otherPURE UUID: 0e926154-6cc2-43fe-a1ca-b5403a3bafe5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0e926154-6cc2-43fe-a1ca-b5403a3bafe5en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40518022/Scalability_of_a_Machine_Learning_Environment.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43245
dc.identifier.urnURN:NBN:fi:aalto-202002282294
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Industrial Informaticsen
dc.relation.ispartofseriesProceedings - 2019 IEEE 17th International Conference on Industrial Informatics, INDIN 2019en
dc.relation.ispartofseriespp. 687-692en
dc.relation.ispartofseriesIEEE International Conference on Industrial Informatics (INDIN)en
dc.rightsopenAccessen
dc.subject.keywordSimulationen_US
dc.subject.keywordHybrid Systemsen_US
dc.subject.keywordNew Control Applicationsen_US
dc.titleScalability of a Machine Learning Environment for Autonomous Driving Researchen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files