Computing Maximum and Minimum with Privacy Preservation and Flexible Access Control

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDing, Wenxiuen_US
dc.contributor.authorYan, Zhengen_US
dc.contributor.authorQian, X.R.en_US
dc.contributor.authorDeng, R.H.en_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorNetwork Security and Trusten
dc.contributor.organizationXidian Universityen_US
dc.contributor.organizationSingapore Management Universityen_US
dc.date.accessioned2020-04-30T12:50:24Z
dc.date.available2020-04-30T12:50:24Z
dc.date.issued2019en_US
dc.description.abstractWith the fast development of Internet of Things, huge volume of data is being collected from various sensors and devices, aggregated at gateways, and processed in the cloud. Due to privacy concern, data are usually encrypted before being outsourced to the cloud. However, encryption seriously impedes both computation over the data and sharing of the computation results. Computing maximum and minimum among a data set are two of the most basic operations in machine learning and data mining algorithms. In this paper, we study how to compute maximum and minimum over encrypted data and control the access to the computation result in a privacy-preserving manner. We present four schemes to realize privacy-preserving maximum and minimum computations with flexible access control that can adapt to various application scenarios. We further analyze their security and show their efficiency through extensive evaluations and comparisons with existing work. © 2019 IEEE.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDing, W, Yan, Z, Qian, X R & Deng, R H 2019, Computing Maximum and Minimum with Privacy Preservation and Flexible Access Control. in IEEE Global Communications Conference., 9013937, IEEE Global Communications Conference, IEEE, IEEE Global Communications Conference, Waikoloa, Hawaii, United States, 09/12/2019. https://doi.org/10.1109/GLOBECOM38437.2019.9013937en
dc.identifier.doi10.1109/GLOBECOM38437.2019.9013937en_US
dc.identifier.isbn9781728109626
dc.identifier.issn2334-0983
dc.identifier.otherPURE UUID: 82d81e82-2d5d-4a00-9a03-4d8555bc1fceen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/82d81e82-2d5d-4a00-9a03-4d8555bc1fceen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/42573543/Ding_Computing_maximum_and_minimum_Globecom.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/44004
dc.identifier.urnURN:NBN:fi:aalto-202004302983
dc.language.isoenen
dc.relation.ispartofIEEE Global Communications Conferenceen
dc.relation.ispartofseriesIEEE Global Communications Conferenceen
dc.rightsopenAccessen
dc.subject.keywordaccess controlen_US
dc.subject.keywordattribute-based encryptionen_US
dc.subject.keywordhomomorphic encryptionen_US
dc.subject.keywordmaximum and minimumen_US
dc.subject.keywordprivacy preservationen_US
dc.titleComputing Maximum and Minimum with Privacy Preservation and Flexible Access Controlen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files