Semantic matching by weakly supervised 2D point set registration
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Laskar, Zakaria | en_US |
dc.contributor.author | Tavakoli, Hamed R. | en_US |
dc.contributor.author | Kannala, Juho | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Kannala Juho | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Centre of Excellence in Computational Inference, COIN | en |
dc.date.accessioned | 2019-07-30T07:19:23Z | |
dc.date.available | 2019-07-30T07:19:23Z | |
dc.date.issued | 2019-03-04 | en_US |
dc.description.abstract | In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL)[8]. The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 9 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Laskar, Z, Tavakoli, H R & Kannala, J 2019, Semantic matching by weakly supervised 2D point set registration. in 2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)., 8658796, IEEE, pp. 1061-1069, IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Hawaii, United States, 07/01/2019. https://doi.org/10.1109/WACV.2019.00118 | en |
dc.identifier.doi | 10.1109/WACV.2019.00118 | en_US |
dc.identifier.isbn | 9781728119755 | |
dc.identifier.other | PURE UUID: ac06c154-495f-4ca7-bc77-2d1efa2a3756 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/ac06c154-495f-4ca7-bc77-2d1efa2a3756 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85063564195&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/35329458/SCI_Laskar_Tavakoli_Kannala_Semantic_Matching.wacv.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/39486 | |
dc.identifier.urn | URN:NBN:fi:aalto-201907304541 | |
dc.language.iso | en | en |
dc.relation.ispartof | IEEE Winter Conference on Applications of Computer Vision | en |
dc.relation.ispartofseries | 2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | en |
dc.relation.ispartofseries | pp. 1061-1069 | en |
dc.rights | openAccess | en |
dc.title | Semantic matching by weakly supervised 2D point set registration | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |