Semantic matching by weakly supervised 2D point set registration

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLaskar, Zakariaen_US
dc.contributor.authorTavakoli, Hamed R.en_US
dc.contributor.authorKannala, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Kannala Juhoen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.date.accessioned2019-07-30T07:19:23Z
dc.date.available2019-07-30T07:19:23Z
dc.date.issued2019-03-04en_US
dc.description.abstractIn this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL)[8]. The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLaskar, Z, Tavakoli, H R & Kannala, J 2019, Semantic matching by weakly supervised 2D point set registration. in 2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)., 8658796, IEEE, pp. 1061-1069, IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Hawaii, United States, 07/01/2019. https://doi.org/10.1109/WACV.2019.00118en
dc.identifier.doi10.1109/WACV.2019.00118en_US
dc.identifier.isbn9781728119755
dc.identifier.otherPURE UUID: ac06c154-495f-4ca7-bc77-2d1efa2a3756en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ac06c154-495f-4ca7-bc77-2d1efa2a3756en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85063564195&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/35329458/SCI_Laskar_Tavakoli_Kannala_Semantic_Matching.wacv.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39486
dc.identifier.urnURN:NBN:fi:aalto-201907304541
dc.language.isoenen
dc.relation.ispartofIEEE Winter Conference on Applications of Computer Visionen
dc.relation.ispartofseries2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)en
dc.relation.ispartofseriespp. 1061-1069en
dc.rightsopenAccessen
dc.titleSemantic matching by weakly supervised 2D point set registrationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files