Engineering Motif Search for Large Motifs

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKaski, Petterien_US
dc.contributor.authorLauri, Juhoen_US
dc.contributor.authorMuniyappa, Suhasen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorD'Angelo, Gianlorenzoen_US
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.contributor.groupauthorProfessorship Kaski Petterien
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationNokia Bell Labs Finlanden_US
dc.date.accessioned2018-12-10T10:32:33Z
dc.date.available2018-12-10T10:32:33Z
dc.date.issued2018en_US
dc.description.abstractGiven a vertex-colored graph H and a multiset M of colors as input, the graph motif problem asks us to decide whether H has a connected induced subgraph whose multiset of colors agrees with M. The graph motif problem is NP-complete but known to admit randomized algorithms based on constrained multilinear sieving over GF(2^b) that run in time O(2^kk^2m {M({2^b})}) and with a false-negative probability of at most k/2^{b-1} for a connected m-edge input and a motif of size k. On modern CPU microarchitectures such algorithms have practical edge-linear scalability to inputs with billions of edges for small motif sizes, as demonstrated by Björklund, Kaski, Kowalik, and Lauri [ALENEX'15]. This scalability to large graphs prompts the dual question whether it is possible to scale to large motif sizes. We present a vertex-localized variant of the constrained multilinear sieve that enables us to obtain, in time O(2^kk^2m{M({2^b})}) and for every vertex simultaneously, whether the vertex participates in at least one match with the motif, with a per-vertex probability of at most k/2^{b-1} for a false negative. Furthermore, the algorithm is easily vector-parallelizable for up to 2^k threads, and parallelizable for up to 2^kn threads, where n is the number of vertices in H. Here {M({2^b})} is the time complexity to multiply in GF(2^b). We demonstrate with an open-source implementation that our variant of constrained multilinear sieving can be engineered for vector-parallel microarchitectures to yield hardware utilization that is bound by the available memory bandwidth. Our main engineering contributions are (a) a version of the recurrence for tightly labeled arborescences that can be executed as a sequence of memory-and-arithmetic coalescent parallel workloads on multiple GPUs, and (b) a bit-sliced low-level implementation for arithmetic in characteristic 2 to support (a).en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKaski, P, Lauri, J & Muniyappa, S 2018, Engineering Motif Search for Large Motifs. in G D'Angelo (ed.), 17th Symposium on Experimental Algorithms, SEA 2018., 28, Leibniz International Proceedings in Informatics (LIPIcs), vol. 103, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1-19, International Symposium on Experimental Algorithms, L'Aquila, Italy, 27/06/2018. https://doi.org/10.4230/LIPIcs.SEA.2018.28en
dc.identifier.doi10.4230/LIPIcs.SEA.2018.28en_US
dc.identifier.isbn978-3-95977-070-5
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: e198762a-7b4f-4561-a6a5-fa2b3d704f2aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e198762a-7b4f-4561-a6a5-fa2b3d704f2aen_US
dc.identifier.otherPURE LINK: http://drops.dagstuhl.de/opus/volltexte/2018/8963/en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/30110608/LIPIcs_SEA_2018_28.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35312
dc.identifier.urnURN:NBN:fi:aalto-201812106327
dc.language.isoenen
dc.relation.ispartofInternational Symposium on Experimental Algorithmsen
dc.relation.ispartofseries17th Symposium on Experimental Algorithms, SEA 2018en
dc.relation.ispartofseriespp. 1-19en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics (LIPIcs) ; Volume 103en
dc.rightsopenAccessen
dc.subject.keywordalgorithm engineeringen_US
dc.subject.keywordconstrained multilinear sievingen_US
dc.subject.keywordgraph motif problemen_US
dc.subject.keywordmulti-GPUen_US
dc.subject.keywordvector-parallelen_US
dc.subject.keywordvertex-localizationen_US
dc.titleEngineering Motif Search for Large Motifsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files