Multi-Frequency Tracking via Group-Sparse Optimal Transport

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHaasler, Isabelen_US
dc.contributor.authorElvander, Filipen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorStructured and Stochastic Modelingen
dc.contributor.organizationSwiss Federal Institute of Technology Lausanneen_US
dc.date.accessioned2024-06-12T06:16:01Z
dc.date.available2024-06-12T06:16:01Z
dc.date.issued2024-05-24en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractIn this work, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that change smoothly over time. In this work, we consider the tracking of the spatio-temporal spectrum corresponding to a small number of moving broad-band signal sources. Typically, such tracking problems are addressed by treating the spatio-temporal power distribution in a frequency-by-frequency manner, allowing to use well-understood models for narrow-band signals. This however leads to decreased target resolution due to inefficient use of the available information. We propose an extension of the optimal transport framework that exploits information from several frequencies simultaneously by estimating a spatio-temporal distribution penalized by a group-sparsity regularizer. This approach finds a spatial spectrum that changes smoothly over time, and at each time instance has a small support that is similar across frequencies. To the best of the authors’ knowledge, this is the first formulation combining optimal transport and sparsity for solving inverse problems. As is shown on simulated and real data, our method can successfully track targets in scenarios where information from separate frequency bands alone is insufficient.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHaasler, I & Elvander, F 2024, 'Multi-Frequency Tracking via Group-Sparse Optimal Transport', IEEE Control Systems Letters, vol. 8, pp. 1048-1053. https://doi.org/10.1109/LCSYS.2024.3405375en
dc.identifier.doi10.1109/LCSYS.2024.3405375en_US
dc.identifier.issn2475-1456
dc.identifier.otherPURE UUID: 452b982d-a455-4719-af92-35cb0df5cb98en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/452b982d-a455-4719-af92-35cb0df5cb98en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85194034742&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/147676159/HaaslerE24_lcss_final.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/128663
dc.identifier.urnURN:NBN:fi:aalto-202406124253
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Control Systems Lettersen
dc.relation.ispartofseriesVolume 8, pp. 1048-1053en
dc.rightsopenAccessen
dc.subject.keywordBroadband communicationen_US
dc.subject.keywordCostsen_US
dc.subject.keywordEstimationen_US
dc.subject.keywordFilter banksen_US
dc.subject.keywordFrequency estimationen_US
dc.subject.keywordLarge-scale systemsen_US
dc.subject.keywordOptimization algorithmsen_US
dc.subject.keywordTarget trackingen_US
dc.subject.keywordTime-frequency analysisen_US
dc.titleMulti-Frequency Tracking via Group-Sparse Optimal Transporten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files