Predictable Quantum Efficient Detector

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorManoocheri, Farshid, Dr., Aalto University, Aalto University, Department of Signal Processing and Acoustics, Finland
dc.contributor.authorSildoja, Meelis-Mait
dc.contributor.departmentSignaalinkäsittelyn ja akustiikan laitosfi
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.labMetrology Research Instituteen
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.schoolSchool of Electrical Engineeringen
dc.contributor.supervisorIkonen, Erkki, Prof., Aalto University, Department of Signal Processing and Acoustics, Finland
dc.date.accessioned2013-12-02T10:00:36Z
dc.date.available2013-12-02T10:00:36Z
dc.date.dateaccepted2013-11-12
dc.date.defence2013-12-13
dc.date.issued2013
dc.description.abstractThis thesis gives an overview of the Predictable Quantum Efficient Detector designed to measure optical radiation with theoretical relative uncertainty of 1 ppm (parts per million). The device is based on two custom made large area induced junction silicon photodiodes arranged in a wedged trap structure. High internal quantum efficiency (IQE) of the photodiodes is achieved by means of low doping concentration and usage of the reverse bias voltage. The IQE is predicted to be improved furthermore using low operating temperature close to 77 K. The losses due to reflected light are minimized by multiple reflections between the photodiodes. Low losses allow the PQED to work as an ideal quantum detector whose spectral responsivity is determined purely by the fundamental constants h, c, e and vacuum wavelength lambda. The remaining minor charge carrier losses are predictable using physical modelling whereas fractional reflectance losses can be measured. These properties classify the PQED as an absolute detector which does not require calibration against any other radiometric primary standard. The prototype PQED was compared against present primary standard - the cryogenic radiometer – at the wavelengths of 476 nm, 532 nm and 760 nm at room temperature and at liquid nitrogen temperature. Comparisons showed that the predicted external quantum deficiency of the PQED agreed with the measured external quantum deficiency within the expanded uncertainty of 60 ppm to 180 ppm determined by the cryogenic radiometer at both temperatures. These results indicate that the responsivity of the PQED is highly predictable and its uncertainty is comparable with the uncertainty of the conventional cryogenic radiometer. Such data provide evidence that the cryogenic radiometer operated close to 10 K temperatures may be replaced by a PQED operated even at room temperature. The advantage of the PQED is its simple operation which is comparable with any other silicon based photodetector whereas its optical radiation detection uncertainty is comparable with expensive and sophisticated cryogenic radiometer.en
dc.format.extent115
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-952-60-5463-6 (electronic)
dc.identifier.isbn978-952-60-5462-9 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/11765
dc.identifier.urnURN:ISBN:978-952-60-5463-6
dc.language.isoenen
dc.opnDowell, Marla, Dr., National Institute of Standards and Technology, USA
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: M. Sildoja, F. Manoocheri, and E. Ikonen, “Reducing photodiode reflectance by Brewster-angle operation,” Metrologia, 45, 11–15, 2008.
dc.relation.haspart[Publication 2]: M. Sildoja, F. Manoocheri, and E. Ikonen, “Reflectance calculations for a predictable quantum efficient detector,” Metrologia, 46, S151–S154, 2009.
dc.relation.haspart[Publication 3]: J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, “Simulations of a predictable quantum efficient detector with PC1D,” Metrologia, 49, S130–S134, 2012.
dc.relation.haspart[Publication 4]: M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M. L. Rastello, “Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia, 50, 385–394, 2013.
dc.relation.haspart[Publication 5]: I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, “Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia, 50, 395–401, 2013.
dc.relation.haspart[Publication 6]: M. Sildoja, T. Dönsberg, H. Mäntynen, M. Merimaa, F. Manoocheri, and E. Ikonen, “Use of the predictable quantum efficient detector with light sources of uncontrolled state of polarization,” Measurement Science and Technology, accepted.
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries199/2013
dc.revMonakhov, Edouard, prof., University of Oslo, Norway
dc.revNield, Kathryn, dr., Measurement Standards Laboratory, New Zealand
dc.subject.keywordphotodetectorsen
dc.subject.keywordsilicon photodiodesen
dc.subject.keywordmetrologyen
dc.subject.keywordradiometryen
dc.subject.keywordoptical power measurementsen
dc.subject.keywordabsolute standardsen
dc.subject.keywordoptical standards and testingen
dc.subject.otherElectrical engineeringen
dc.subject.otherPhysics
dc.titlePredictable Quantum Efficient Detectoren
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.digiauthask
local.aalto.digifolderAalto_66720
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526054636.pdf
Size:
5.29 MB
Format:
Adobe Portable Document Format