Quantum-assisted Hilbert-space Gaussian process regression
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-05-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Physical Review A, Volume 109, issue 5
Abstract
Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert-space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and swap tests. The quantum principal component analysis is used to estimate the eigenvalues, while the conditional rotations and the Hadamard and swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.Description
Keywords
Other note
Citation
Farooq, A, Galvis-Florez, C A & Särkkä, S 2024, ' Quantum-assisted Hilbert-space Gaussian process regression ', Physical Review A, vol. 109, no. 5, 052410 . https://doi.org/10.1103/PhysRevA.109.052410