GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLeppäaho, Eemelien_US
dc.contributor.authorAmmad-ud-din, Muhammaden_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.date.accessioned2017-08-03T12:09:19Z
dc.date.available2017-08-03T12:09:19Z
dc.date.issued2017en_US
dc.description.abstractThe R package GFA provides a full pipeline for factor analysis of multiple data sources that are represented as matrices with co-occurring samples. It allows learning dependencies between subsets of the data sources, decomposed into latent factors. The package also implements sparse priors for the factorization, providing interpretable biclusters of the multi-source data.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLeppäaho, E, Ammad-ud-din, M & Kaski, S 2017, 'GFA : Exploratory Analysis of Multiple Data Sources with Group Factor Analysis', Journal of Machine Learning Research, vol. 18, 39, pp. 1-5. < http://jmlr.org/papers/v18/16-509.html >en
dc.identifier.issn1532-4435
dc.identifier.issn1533-7928
dc.identifier.otherPURE UUID: 7cdd1e87-9dbd-4243-85f8-28defd293c3cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/7cdd1e87-9dbd-4243-85f8-28defd293c3cen_US
dc.identifier.otherPURE LINK: http://jmlr.org/papers/v18/16-509.htmlen_US
dc.identifier.otherPURE LINK: http://www.jmlr.org/papers/volume18/16-509/16-509.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/14254602/16_509.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/27390
dc.identifier.urnURN:NBN:fi:aalto-201708036358
dc.language.isoenen
dc.publisherMicrotome Publishing
dc.relation.ispartofseriesJournal of Machine Learning Researchen
dc.relation.ispartofseriesVolume 18, pp. 1-5en
dc.rightsopenAccessen
dc.subject.keywordBayesian latent variable modellingen_US
dc.subject.keywordbiclusteringen_US
dc.subject.keyworddata integrationen_US
dc.subject.keywordfactor analysisen_US
dc.subject.keywordmulti-view learningen_US
dc.titleGFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files