The extreme HBL behaviour of Markarian 501 during 2012

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Degree programme
Astronomy and Astrophysics, Volume 620
A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of ∼ 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was ∼ 3 CU, and the peak of the high-energy spectral component was found to be at ∼ 2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.
astroparticle physics, acceleration of particles, radiation mechanisms: non-thermal, BL Lacertae objects: general, BL Lacertae objects: individual: Mrk501, 115 Astronomy and space science
Other note
MAGIC Collaboration , VERITAS Collaboration , FACT Collaboration , Hovatta , T , Lähteenmäki , A , Tornikoski , M & Tammi , J 2018 , ' The extreme HBL behaviour of Markarian 501 during 2012 ' Astronomy and Astrophysics , vol. 620 .