Extreme nonlinear strong-field photoemission from carbon nanotubes
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-12-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Nature Communications, Volume 10, issue 1
Abstract
Strong-field photoemission produces attosecond (10−18 s) electron pulses that are synchronized to the waveform of the incident light. This nonlinear photoemission lies at the heart of current attosecond technologies. Here we report a new nonlinear photoemission behaviour—the nonlinearity in strong-field regime sharply increases (approaching 40th power-law scaling), making use of sub-nanometric carbon nanotubes and 800 nm pulses. As a result, the carrier-envelope phase sensitive photoemission current shows a greatly improved modulation depth of up to 100% (with a total modulation current up to 2 nA). The calculations reveal that the behaviour is an interplay of valence band optical-field emission with charge interaction, and the nonlinear dynamics can be tunable by changing the bandgap of carbon nanotubes. The extreme nonlinear photoemission offers a new means of producing extreme temporal-spatial resolved electron pulses, and provides a new design philosophy for attosecond electronics and photonics.Description
| openaire: EC/H2020/834742/EU//ATOP | openaire: EC/H2020/820423/EU//S2QUIP
Keywords
Other note
Citation
Li, C, Chen, K, Guan, M, Wang, X, Zhou, X, Zhai, F, Dai, J, Li, Z, Sun, Z, Meng, S, Liu, K & Dai, Q 2019, ' Extreme nonlinear strong-field photoemission from carbon nanotubes ', Nature Communications, vol. 10, no. 1, 4891 . https://doi.org/10.1038/s41467-019-12797-z