Surface-Modified and Unmodified Calcite: Effects of Water and Saturated Aqueous Octanoic Acid Droplets on Stability and Saturated Fatty Acid Layer Organization
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-12-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
14135–14146
14135–14146
Series
Langmuir, Volume 37, issue 48
Abstract
A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO3)2 molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.Description
Funding Information: This work was funded by the Omya International AG. A.S. is a researcher at Pro2BE at the Karlstad University, the research environment on Processes and Products for a Circular Biobased Economy. Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.
Keywords
Other note
Citation
Wojas , N A , Swerin , A , Wallqvist , V , Järn , M , Schoelkopf , J , Gane , P A C & Claesson , P M 2021 , ' Surface-Modified and Unmodified Calcite: Effects of Water and Saturated Aqueous Octanoic Acid Droplets on Stability and Saturated Fatty Acid Layer Organization ' , Langmuir , vol. 37 , no. 48 , pp. 14135–14146 . https://doi.org/10.1021/acs.langmuir.1c02387