Tunable and Magnetic Thiol-ene Micropillar Arrays

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Degree programme
Macromolecular Rapid Communications
Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol–ene micropillars are fabricated. Omnidirectional collective bending of the pillar array in magnetic field is shown. Local non‐contact actuation of a single pillar is achieved using an electromagnetic needle to probe the responsiveness and the elastic properties of the pillars by comparing the effect of thiol–ene crosslinking density to pillar bending. The suitable thiol–ene components for flexible and stiff magnetic micropillars and the workable range of thiol‐to‐allyl ratio are identified. The wettability of the magnetic pillars can be tailored by chemical and topography modification of the pillar surface. Low‐surface‐energy self‐assembled monolayers are grafted by UV‐assisted surface activation, which is also used for surface topography modificationby covalent bonding of micro‐ and nanoparticles to the pillar surface. The modified thiol–ene micopillars are resistant to capillarity‐driven collapse and they exhibit low contact angle hysteresis, allowing water droplet motion driven by repeated bending and recovery of the magnetic pillars in an external magnetic field. Transport of polyethylene microspheres is also demonstrated.
| openaire: EC/H2020/725513/EU//SuperRepel ASETA EMBARGO KUN ILMESTYY VIRALLISESTI (12 KK)
microdroplet transport, micromanipulation, Self-assembly, superhydrophobicity, thiol-ene elastomer
Other note
Al-Azawi , A , Cenev , Z , Tupasela , T , Peng , B , Ikkala , O , Zhou , Q , Jokinen , V , Franssila , S & Ras , R 2020 , ' Tunable and Magnetic Thiol-ene Micropillar Arrays ' , Macromolecular Rapid Communications , vol. 41 , no. 2 , 1900522 , pp. 1-6 . https://doi.org/10.1002/marc.201900522