A mathematical model for electrical impedance process tomography
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Pikkarainen, Hanna Katriina | |
dc.contributor.department | Department of Engineering Physics and Mathematics | en |
dc.contributor.department | Teknillisen fysiikan ja matematiikan osasto | fi |
dc.contributor.lab | Institute of Mathematics | en |
dc.contributor.lab | Matematiikan laitos | fi |
dc.date.accessioned | 2012-02-17T06:58:30Z | |
dc.date.available | 2012-02-17T06:58:30Z | |
dc.date.issued | 2005-05-13 | |
dc.description.abstract | We consider the process tomography problem of the following kind: based on electromagnetic measurements on the surface of a pipe, describe the concentration distribution of a given substance in a fluid moving in the pipeline. We view the problem as a state estimation problem. The concentration distribution is treated as a stochastic process satisfying a stochastic differential equation. This is referred to as the state evolution equation. The measurements are described in terms of an observation equation containing the measurement noise. The time evolution is modelled by a stochastic convection-diffusion equation. The measurement situation is represented by the most realistic model for electrical impedance tomography, the complete electrode model. In this thesis, we give the mathematical formulation of the state evolution and observation equations and then we derive the discrete infinite dimensional state estimation system. Since our motive is to monitor the flow in the pipeline in real time, we are dealing with a filtering problem in which the estimator is based on the current history of the measurement process. For computational reasons we present a discretized state estimation system where the discretization error is taken into account. The discretized filtering problem is solved by the Bayesian filtering method. | en |
dc.description.version | reviewed | en |
dc.format.extent | 172 | |
dc.format.mimetype | application/pdf | |
dc.identifier.isbn | 951-22-7672-0 | |
dc.identifier.issn | 0784-3143 | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/2563 | |
dc.identifier.urn | urn:nbn:fi:tkk-005178 | |
dc.language.iso | en | en |
dc.publisher | Helsinki University of Technology | en |
dc.publisher | Teknillinen korkeakoulu | fi |
dc.relation.ispartofseries | Research reports / Helsinki University of Technology, Institute of Mathematics. A | en |
dc.relation.ispartofseries | 486 | en |
dc.subject.keyword | statistical inversion theory | en |
dc.subject.keyword | nonstationary inverse problem | en |
dc.subject.keyword | state estimation | en |
dc.subject.keyword | Bayesian filtering | en |
dc.subject.keyword | process tomography | en |
dc.subject.keyword | electrical impedance tomography | en |
dc.subject.keyword | complete electrode model | en |
dc.subject.other | Medical sciences | en |
dc.subject.other | Physics | en |
dc.title | A mathematical model for electrical impedance process tomography | en |
dc.type | G4 Monografiaväitöskirja | fi |
dc.type.dcmitype | text | en |
dc.type.ontasot | Väitöskirja (monografia) | fi |
dc.type.ontasot | Doctoral dissertation (monograph) | en |
local.aalto.digiauth | ask | |
local.aalto.digifolder | Aalto_68438 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- isbn9512276720.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format