Novel carbon nanomaterials for the direct methanol fuel cell electrodes

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorRuiz, Virginia, Dr., IK4-CIDETEC – Centre for Electrochemical Technologies, Spain
dc.contributor.authorBorghei, Maryam
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labNanoMaterials Groupen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorKauppinen, Esko, Prof., Aalto University, Department of Applied Physics, Finland
dc.date.accessioned2015-04-16T09:00:27Z
dc.date.available2015-04-16T09:00:27Z
dc.date.dateaccepted2015-02-03
dc.date.defence2015-04-24
dc.date.issued2015
dc.description.abstractDirect methanol fuel cells (DMFC) are great candidates for portable power source applications. However, the sluggish reaction kinetics are key challenges in DMFC technology. The state-of-the-art electrocatalysts are Pt-based catalysts supported on carbon black. However, the high price of Pt, corrosion of carbon support and Pt degradation are the main problems.  In this thesis, carbon nanomaterials, namely few-walled carbon nanotubes (FWCNTs) and graphitized nanofibers (GNFs) were used as catalyst supports in the search for stable and durable catalysts. PtRu nanocatalysts with similar particle size and composition were synthesized and deposited on FWCNTs and GNFs. The electrochemical activities for methanol oxidation were compared with that of PtRu-carbon black in acidic conditions. The half-cell electrochemical measurements revealed higher activity with PtRu-GNFs and PtRu-FWCNTs. Later, the electrocatalysts were tested in macro- and micro-DMFC. The results revealed the significant influence of the catalyst support, inomer contect, electrode structure, preparation method, as well as the fuel cell architecture on the performance of a specific electrode material. The results also highlighted the necessity of electrode composition optimization when applying new materials at the electrodes, in order to achieve the best activity and durability for a certain electrocatalyst.  A special effort was also done to achieve Pt-free electrocatalysts with high activity for the oxygen reduction reaction (ORR) by introducing nitrogen heteroatoms in carbon nanomaterials, namely FWCNTs and graphite nanoplatelets (GNPs). N-FWCNTs exhibited remarkable electrocatalytic activity for ORR in alkaline media, despite their very low nitrogen content (~0.5 at.%). N-FWCNTs performed on par or better than a commercial Pt-C at the cathode of an alkaline DMFC. The N-GNPs exhibited enhanced electrocatalytic activity for ORR compared to pristine GNPs in alkaline media. The results indicated that N-doped carbon nanomaterials could be promising alternatives to their Pt counterparts to reduce fuel cell costs. However, further investigations are necessary to ascertain the real active sites in order to design more efficient and durable ORR electrocatalysts.en
dc.format.extent117
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-6141-2 (electronic)
dc.identifier.isbn978-952-60-6140-5 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/15675
dc.identifier.urnURN:ISBN:978-952-60-6141-2
dc.language.isoenen
dc.opnNakashima, Naotoshi, Prof., Kyushu University, Japan
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: A. Santasalo-Aarnio, M. Borghei, I.V. Anoshkin, A.G. Nasibulin, E.I. Kauppinen, V. Ruiz, T. Kallio. Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell, International Journal of Hydrogen Energy 37 (2012) 3415-24. doi:10.1016/j.ijhydene.2011.11.009.
dc.relation.haspart[Publication 2]: M. Borghei, G. Scotti, P. Kanninen, T. Wekman, I.V. Anoshkin, A.G. Nasibulin, S. Franssila, E.I. Kauppinen, T. Kallio, V. Ruiz. Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes, Energy 65 (2014) 612-20. http://dx.doi.org/10.1016/j.energy.2013.11.067.
dc.relation.haspart[Publication 3]: P. Kanninen, M. Borghei, V. Ruiz, E.I. Kauppinen, T. Kallio. The effect of Nafion content in a graphitized carbon nanofiber-based anode for the direct methanol fuel cell, International Journal of Hydrogen Energy 37 (2012) 19082-91. http://dx.doi.org/10.1016/j.ijhydene.2012.09.138.
dc.relation.haspart[Publication 4]: M. Borghei, P. Kanninen, M. Lundahl, T. Susi, J. Sainio, I.V. Anoshkin, A.G. Nasibulin, T. Kallio, K. Tammeveski, E.I. Kauppinen, V. Ruiz. High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental 158-159 (2014) 233-41. http://dx.doi.org/10.1016/j.apcatb.2014.04.027.
dc.relation.haspart[Publication 5]: M. Borghei, I. Azcune, PM. Carrasco, J. Sainio, E.I. Kauppinen, V. Ruiz. Nitrogen-doped graphene with enhanced oxygen reduction activity produced by pyrolysis of graphene functionalized with imidazole derivatives. International Journal of Hydrogen Energy 39 (2014) 24, 12749-56. http://dx.doi.org/10.1016/j.ijhydene.2014.06.105.
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries42/2015
dc.revRønning, Magnus, Prof., NTNU, Norway
dc.revJaouen, Frédéric, Dr., Université Montpellier II, France
dc.subject.keywordcarbon nanomaterialsen
dc.subject.keywordPtRu catalystsen
dc.subject.keywordnitrogen-dopingen
dc.subject.keyworddirect methanol fuel cellen
dc.subject.otherEnergyen
dc.titleNovel carbon nanomaterials for the direct methanol fuel cell electrodesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.archiveyes
local.aalto.digiauthask
local.aalto.digifolderAalto_64563
local.aalto.formfolder2015_04_15_klo_14_36

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526061412.pdf
Size:
5.91 MB
Format:
Adobe Portable Document Format