Tiheysfunktionaaliteoreettinen tutkimus vedynkehitysreaktiosta typpidoupatulla hiilinanoputkella

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Kemian tekniikan korkeakoulu | Master's thesis
Date
2014-12-02
Department
Major/Subject
Kemia
Mcode
KE3001
Degree programme
KEM - Kemian tekniikan koulutusohjelma
Language
fi
Pages
89 + 5
Series
Abstract
Heteroatomeilla muokattujen hiilinanoputkien on muun muassa osoitettu katalysoivan vedyn sähkökemiallista muodostumisreaktiota suuremmalla aktiivisuudella kuin puhtaiden hiilinanoputkien. Ero aktiivisuudessa johtuu heteroatomien aiheuttamista muutoksista nanoputken elektronirakenteeseen. Ilmiötä on erittäin vaikea tutkia kokeellisesti. Tietokonesimulaatiot sen sijaan soveltuvat erinomaisesti näiden muutosten karakterisointiin. Tässä diplomityössä tutkittiin vedynkehitysreaktion Volmer–Tafel-mekanismia typpidoupatun (14,0)-hiilinanoputken pinnalla käyttämällä tiheysfunktionaaliteoreettisia simulaatioita. Mallinnuksessa sovellettiin sekä molekyylidynamiikkaa että staattisia reaktiopolun määritysmenetelmiä. Kokeellisesti sähkökemiallista aktiivisuutta mitataan elektrodipotentiaalin funktiona. Jotta simuloidut tulokset olisivat vertailukelpoisia, niin kutsuttua kaksoisreferenssimenetelmää käytettiin potentiaaliriippuvuuden approksimoimiseen. Elektrodipotentiaalin määritykseen käytetyn menetelmän oikeellisuus varmistettiin vertaamalla laskennallista ja kokeellista nollavarauspotentiaalia. Nanoputken stabiileimmat pintapaikat vetyatomien adsorptiolle määritettiin vakuumissa. Kahden protonin peräkkäisiä Volmer-reaktioita tutkittiin näillä pintapaikoilla happamassa vesiliuoksessa. Reaktioiden aktivaatioenergioiden havaittiin laskevan voimakkaasti potentiaalin funktiona. Ensimmäisellä protonilla aktivaatioenergia laski 0.7 eV:sta 0.2 eV:iin ja toisella 0.5 eV:sta 0.1 eV:iin, kun standardivetyelektrodiin suhteutettua potentiaalia muutettiin +0.5 V:sta -1.5 V:iin. Vakiopotentiaaliolosuhteiden käyttö osoitettiin välttämättömäksi, jotta reaktion tarkka potentiaaliriippuvuus voitiin määrittää. Typpidouppauksen ei havaittu vaikuttavan ensimmäisen Volmer-reaktion aktivaatioenergiaan vakiovarauksella. Tarkempaa vertailua doupatun ja puhtaan nanoputken välillä ei kuitenkaan suoritettu. Lopuksi tutkittiin pinnalle sitoutuneiden vetyatomien reaktiota vetymolekyyliksi. Reaktion aktivaatioenergian todettiin olevan suuri eikä mekanismi ollut kemiallisesti järkevä. Näin ollen Tafel-reaktion osoitettiin olevan mahdoton ideaalisella nanoputkella ja vedynkehitysreaktion tulisi edetä Volmer–Heyrovsky-mekanismilla.

Doped carbon nanotubes have been shown to catalyze, for example, the electrochemical formation of molecular hydrogen with a higher activity than undoped nanotubes. This difference in activity arises due to changes in the electronic structure of the nanotube introduced by the dopant atoms. This phenomenon is inherently difficult to study experimentally. Computer simulations, on the other hand, can readily be applied to investigate these changes. In this work, the Volmer-Tafel mechanism of the hydrogen evolution reaction (HER) was investigated on a nitrogen doped (14,0) carbon nanotube using density functional theory simulations. Both molecular dynamics simulations and static reaction path search methods were utilized. Experimentally, electrocatalytic activity is measured as a function of electrode potential. In order to obtain comparable simulation results, the so-called double reference method was used to approximate the potential dependent behaviour. The validity of the electrode potential scheme was verified by comparing the computational and experimental potentials of zero charge. The most stable surface sites for hydrogen atom adsorption were determined in vacuum. The consecutive Volmer reactions of two protons onto these sites were investigated in acidic solution. The activation energy of both reactions showed a strong dependence on potential. The activation energy of the first reaction decreased from 0.7 to 0.2 eV and that of the second from 0.5 to 0.1 eV, as potential was changed from +0.5 V to -1.5 V vs the standard hydrogen electrode. Modeling the reaction at constant potential was shown to be necessary for obtaining an accurate potential dependence. Nitrogen doping did not to influence the activation energy of the first Volmer reaction at constant charge; however; a full investigation between undoped and doped nanotubes was not performed. The formation of molecular hydrogen from the two adsorbed hydrogen atoms showed a high activation energy and a chemically unrealistic mechanism. Thus, the Tafel reaction was proven impossible on structurally ideal nanotubes and the Volmer-Heyrovsky mechanism should be the primary mechanism for HER.
Description
Supervisor
Laasonen, Kari
Thesis advisor
Melander, Marko
Keywords
tiheysfunktionaaliteoria, vedynkehitysreaktio, hiilinanoputki, elektrokatalyysi
Other note
Citation