Differentiable user models

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHämäläinen, Alexen_US
dc.contributor.authorCelikok, Mustafa Merten_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2023-09-13T06:49:51Z
dc.date.available2023-09-13T06:49:51Z
dc.date.issued2023-08en_US
dc.description| openaire: EC/H2020/951847/EU//ELISE | openaire: EC/H2020/952026/EU//HumanE-AI-Net
dc.description.abstractProbabilistic user modeling is essential for building machine learning systems in the ubiquitous cases with humans in the loop. However, modern advanced user models, often designed as cognitive behavior simulators, are incompatible with modern machine learning pipelines and computationally prohibitive for most practical applications. We address this problem by introducing widely-applicable differentiable surrogates for bypassing this computational bottleneck; the surrogates enable computationally efficient inference with modern cognitive models. We show experimentally that modeling capabilities comparable to the only available solution, existing likelihood-free inference methods, are achievable with a computational cost suitable for online applications. Finally, we demonstrate how AI-assistants can now use cognitive models for online interaction in a menu-search task, which has so far required hours of computation during interaction.en
dc.description.versionPeer revieweden
dc.format.extent798-808
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHämäläinen, A, Celikok, M M & Kaski, S 2023, Differentiable user models . in Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023) . vol. 216, Proceedings of Machine Learning Research, vol. 216, JMLR, pp. 798-808, Conference on Uncertainty in Artificial Intelligence, Pittsburgh, Pennsylvania, United States, 31/07/2023 . < https://proceedings.mlr.press/v216/hamalainen23a.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: fb4e5806-6c9f-4359-8599-5c32dc338eb9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fb4e5806-6c9f-4359-8599-5c32dc338eb9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85170073638&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v216/hamalainen23a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/120701468/SCI_H_m_l_inen_etal_UAI_2023.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/123524
dc.identifier.urnURN:NBN:fi:aalto-202309135884
dc.language.isoenen
dc.publisherPMLR
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/952026/EU//HumanE-AI-Neten_US
dc.relation.ispartofConference on Uncertainty in Artificial Intelligenceen
dc.relation.ispartofseriesProceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023)en
dc.relation.ispartofseriesProceedings of Machine Learning Researchen
dc.relation.ispartofseriesVolume 216en
dc.rightsopenAccessen
dc.titleDifferentiable user modelsen
dc.typeConference article in proceedingsfi
dc.type.versionpublishedVersion
Files