Controlling polymer capture and translocation by electrostatic polymer-pore interactions
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Buyukdagli, Sahin | |
dc.contributor.author | Ala-Nissila, T. | |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Multiscale Statistical and Quantum Physics | en |
dc.date.accessioned | 2017-10-13T10:24:49Z | |
dc.date.available | 2017-10-13T10:24:49Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2018-09-21 | |
dc.date.issued | 2017-09-21 | |
dc.description.abstract | Polymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules driven through negatively charged nanopores. Quantitative modeling of polymer capture to the nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In particular, we find that due to distinct ion density regimes where the salt screening of the drift and barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the polymer translocation time τ increases exponentially with the membrane charge and decays exponentially fast with the pore radius and the salt concentration. These results suggest that the alteration of these parameters in the barrier-driven regime can be an efficient way to control the duration of the translocation process and facilitate more accurate measurements of the ionic current signal in the pore. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Buyukdagli, S & Ala-Nissila, T 2017, 'Controlling polymer capture and translocation by electrostatic polymer-pore interactions', Journal of Chemical Physics, vol. 147, no. 11, 114904, pp. 1-14. https://doi.org/10.1063/1.5004182 | en |
dc.identifier.doi | 10.1063/1.5004182 | |
dc.identifier.issn | 0021-9606 | |
dc.identifier.issn | 1089-7690 | |
dc.identifier.other | PURE UUID: 0e613429-7f51-46a2-83ee-49bea9de9205 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/0e613429-7f51-46a2-83ee-49bea9de9205 | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85029871762&partnerID=8YFLogxK | |
dc.identifier.other | PURE LINK: http://aip.scitation.org/doi/full/10.1063/1.5004182 | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/15720392/1.5004182.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/28119 | |
dc.identifier.urn | URN:NBN:fi:aalto-201710136980 | |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics | |
dc.relation.ispartofseries | Journal of Chemical Physics | en |
dc.relation.ispartofseries | Volume 147, issue 11, pp. 1-14 | en |
dc.rights | openAccess | en |
dc.title | Controlling polymer capture and translocation by electrostatic polymer-pore interactions | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |