Controlling polymer capture and translocation by electrostatic polymer-pore interactions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBuyukdagli, Sahin
dc.contributor.authorAla-Nissila, T.
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.date.accessioned2017-10-13T10:24:49Z
dc.date.available2017-10-13T10:24:49Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2018-09-21
dc.date.issued2017-09-21
dc.description.abstractPolymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules driven through negatively charged nanopores. Quantitative modeling of polymer capture to the nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In particular, we find that due to distinct ion density regimes where the salt screening of the drift and barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the polymer translocation time τ increases exponentially with the membrane charge and decays exponentially fast with the pore radius and the salt concentration. These results suggest that the alteration of these parameters in the barrier-driven regime can be an efficient way to control the duration of the translocation process and facilitate more accurate measurements of the ionic current signal in the pore.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdf
dc.identifier.citationBuyukdagli, S & Ala-Nissila, T 2017, 'Controlling polymer capture and translocation by electrostatic polymer-pore interactions', Journal of Chemical Physics, vol. 147, no. 11, 114904, pp. 1-14. https://doi.org/10.1063/1.5004182en
dc.identifier.doi10.1063/1.5004182
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.otherPURE UUID: 0e613429-7f51-46a2-83ee-49bea9de9205
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0e613429-7f51-46a2-83ee-49bea9de9205
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85029871762&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://aip.scitation.org/doi/full/10.1063/1.5004182
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/15720392/1.5004182.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28119
dc.identifier.urnURN:NBN:fi:aalto-201710136980
dc.language.isoenen
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physicsen
dc.relation.ispartofseriesVolume 147, issue 11, pp. 1-14en
dc.rightsopenAccessen
dc.titleControlling polymer capture and translocation by electrostatic polymer-pore interactionsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files