Efficient solution of symmetric eigenvalue problems from families of coupled systems

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

26

Series

SIAM Journal on Numerical Analysis, Volume 57, issue 4, pp. 1789-1814

Abstract

Efficient solution of the lowest eigenmodes is studied for a family of related eigenvalue problems with common 2 × 2 block structure. It is assumed that the upper diagonal block varies between different versions while the lower diagonal block and the range of the coupling blocks remain unchanged. Such block structure naturally arises when studying the effect of a subsystem to the eigenmodes of the full system. The proposed method is based on interpolation of the resolvent function after some of its singularities have been removed by a spectral projection. Singular value decomposition can be used to further reduce the dimension of the computational problem. Error analysis of the method indicates exponential convergence with respect to the number of interpolation points. Theoretical results are illustrated by two numerical examples related to finite element discretization of the Laplace operator.

Description

Other note

Citation

Hannukainen, A, Malinen, J & Ojalammi, A 2019, 'Efficient solution of symmetric eigenvalue problems from families of coupled systems', SIAM Journal on Numerical Analysis, vol. 57, no. 4, pp. 1789-1814. https://doi.org/10.1137/18M1202323