Cross-view kernel transfer

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHuusari, Riikka
dc.contributor.authorCapponi, Cécile
dc.contributor.authorVilloutreix, Paul
dc.contributor.authorKadri, Hachem
dc.contributor.departmentDepartment of Computer Science
dc.contributor.departmentAix-Marseille Université
dc.date.accessioned2022-05-24T05:13:34Z
dc.date.available2022-05-24T05:13:34Z
dc.date.issued2022-09
dc.descriptionFunding Information: This work is mainly granted by the french national project ANR Lives ANR-15-CE23-0026, and by the Turing Center for Living Systems (CENTURI) for PV. For the most part work by RH has been done in Aix-Marseille University – the part in Aalto University has been funded by Academy of Finland grants 334790 (MAGITICS) and 310107 (MACOME). Publisher Copyright: © 2022 The Author(s)
dc.description.abstractWe consider the kernel completion problem with the presence of multiple views in the data. In this context the data samples can be fully missing in some views, creating missing columns and rows to the kernel matrices that are calculated individually for each view. We propose to solve the problem of completing the kernel matrices with Cross-View Kernel Transfer (CVKT) procedure, in which the features of the other views are transformed to represent the view under consideration. The transformations are learned with kernel alignment to the known part of the kernel matrix, allowing for finding generalizable structures in the kernel matrix under completion. Its missing values can then be predicted with the data available in other views. We illustrate the benefits of our approach with simulated data, multivariate digits dataset and multi-view dataset on gesture classification, as well as with real biological datasets from studies of pattern formation in early Drosophila melanogaster embryogenesis.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.extent1-14
dc.format.mimetypeapplication/pdf
dc.identifier.citationHuusari , R , Capponi , C , Villoutreix , P & Kadri , H 2022 , ' Cross-view kernel transfer ' , Pattern Recognition , vol. 129 , 108759 , pp. 1-14 . https://doi.org/10.1016/j.patcog.2022.108759en
dc.identifier.doi10.1016/j.patcog.2022.108759
dc.identifier.issn0031-3203
dc.identifier.otherPURE UUID: c460f993-0a0b-4a04-8c3d-22683dda26cf
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c460f993-0a0b-4a04-8c3d-22683dda26cf
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85129746995&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://www.sciencedirect.com/science/article/pii/S0031320322002400
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/83364575/Cross_View_kernel_transfer.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/114559
dc.identifier.urnURN:NBN:fi:aalto-202205243406
dc.language.isoenen
dc.publisherElsevier Limited
dc.relation.ispartofseriesPattern Recognitionen
dc.relation.ispartofseriesVolume 129en
dc.rightsopenAccessen
dc.subject.keywordCross-view transfer
dc.subject.keywordKernel completion
dc.subject.keywordKernel learning
dc.subject.keywordMulti-view learning
dc.titleCross-view kernel transferen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files