RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHostettler, Rolanden_US
dc.contributor.authorKaltiokallio, Ossien_US
dc.contributor.authorAli, Yuseinen_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.authorJäntti, Rikuen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorCommunication Engineeringen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.date.accessioned2018-02-09T09:57:49Z
dc.date.available2018-02-09T09:57:49Z
dc.date.issued2017en_US
dc.description.abstractIn this paper, we propose a method for respiratory rate estimation based on the received signal strength of narrowband radio frequency transceivers. We employ a state-space formulation of periodic Gaussian processes to model the observed variations in the signal strength. This is then used in a Rao-Blackwellized unscented Kalman filter which exploits the linear substructure of the proposed model and thereby greatly improves computational efficiency. The proposed method is evaluated on measurement data from commercially available off the shelf transceivers. It is found that the proposed method accurately estimates the respiratory rate and provides a systematic way of fusing the measurements of asynchronous frequency channels.en
dc.description.versionPeer revieweden
dc.format.extent256-260
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHostettler, R, Kaltiokallio, O, Ali, Y, Särkkä, S & Jäntti, R 2017, RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering . in 25th European Signal Processing Conference (EUSIPCO) . European Signal Processing Conference, IEEE, pp. 256-260, European Signal Processing Conference, Kos, Greece, 28/08/2017 . https://doi.org/10.23919/EUSIPCO.2017.8081208en
dc.identifier.doi10.23919/EUSIPCO.2017.8081208en_US
dc.identifier.isbn978-1-5386-0751-0
dc.identifier.isbn978-0-9928626-7-1
dc.identifier.issn2076-1465
dc.identifier.otherPURE UUID: 51ef89d5-32ff-4828-b3d1-9f807c70b71aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/51ef89d5-32ff-4828-b3d1-9f807c70b71aen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/16525585/2017_eusipco.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/29828
dc.identifier.urnURN:NBN:fi:aalto-201802091324
dc.language.isoenen
dc.relation.ispartofEuropean Signal Processing Conferenceen
dc.relation.ispartofseries25th European Signal Processing Conference (EUSIPCO)en
dc.relation.ispartofseriesEuropean Signal Processing Conferenceen
dc.rightsopenAccessen
dc.titleRSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filteringen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files