RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Hostettler, Roland | en_US |
dc.contributor.author | Kaltiokallio, Ossi | en_US |
dc.contributor.author | Ali, Yusein | en_US |
dc.contributor.author | Särkkä, Simo | en_US |
dc.contributor.author | Jäntti, Riku | en_US |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.department | Department of Communications and Networking | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Communication Engineering | en |
dc.contributor.groupauthor | Sensor Informatics and Medical Technology | en |
dc.date.accessioned | 2018-02-09T09:57:49Z | |
dc.date.available | 2018-02-09T09:57:49Z | |
dc.date.issued | 2017 | en_US |
dc.description.abstract | In this paper, we propose a method for respiratory rate estimation based on the received signal strength of narrowband radio frequency transceivers. We employ a state-space formulation of periodic Gaussian processes to model the observed variations in the signal strength. This is then used in a Rao-Blackwellized unscented Kalman filter which exploits the linear substructure of the proposed model and thereby greatly improves computational efficiency. The proposed method is evaluated on measurement data from commercially available off the shelf transceivers. It is found that the proposed method accurately estimates the respiratory rate and provides a systematic way of fusing the measurements of asynchronous frequency channels. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 256-260 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Hostettler, R, Kaltiokallio, O, Ali, Y, Särkkä, S & Jäntti, R 2017, RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering . in 25th European Signal Processing Conference (EUSIPCO) . European Signal Processing Conference, IEEE, pp. 256-260, European Signal Processing Conference, Kos, Greece, 28/08/2017 . https://doi.org/10.23919/EUSIPCO.2017.8081208 | en |
dc.identifier.doi | 10.23919/EUSIPCO.2017.8081208 | en_US |
dc.identifier.isbn | 978-1-5386-0751-0 | |
dc.identifier.isbn | 978-0-9928626-7-1 | |
dc.identifier.issn | 2076-1465 | |
dc.identifier.other | PURE UUID: 51ef89d5-32ff-4828-b3d1-9f807c70b71a | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/51ef89d5-32ff-4828-b3d1-9f807c70b71a | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/16525585/2017_eusipco.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/29828 | |
dc.identifier.urn | URN:NBN:fi:aalto-201802091324 | |
dc.language.iso | en | en |
dc.relation.ispartof | European Signal Processing Conference | en |
dc.relation.ispartofseries | 25th European Signal Processing Conference (EUSIPCO) | en |
dc.relation.ispartofseries | European Signal Processing Conference | en |
dc.rights | openAccess | en |
dc.title | RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |