Group-level analysis of induced electric field in deep brain regions by different TMS coils

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGomez-Tames, Joseen_US
dc.contributor.authorHamasaka, Atsushien_US
dc.contributor.authorHirata, Akimasaen_US
dc.contributor.authorLaakso, Ilkkaen_US
dc.contributor.authorLu, Maien_US
dc.contributor.authorUeno, Shoogoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorElectromagnetics in Health Technologyen
dc.contributor.organizationNagoya Institute of Technologyen_US
dc.contributor.organizationLanzhou Jiaotong Universityen_US
dc.contributor.organizationUniversity of Tokyoen_US
dc.date.accessioned2021-03-22T07:05:26Z
dc.date.available2021-03-22T07:05:26Z
dc.date.issued2020-01-16en_US
dc.description12 kk embargo kulunut, kokoteksti avattu 12.3.2021 / Marja M.
dc.description.abstractDeep transcranial magnetic stimulation (dTMS) is a non-invasive technique used for the treatment of depression and obsessive compulsive disorder. In this study, we computationally evaluated group-level dosage for dTMS to characterize the targeted deep brain regions to overcome the limitations of using individualized head models to characterize coil performance in a population. We used an inter-subject registration method adapted to the deep brain regions that enable projection of computed electric fields (EFs) from individual realistic head models (n = 18) to the average space of deep brain regions. The computational results showed consistent group-level hotspots of the EF in the deep brain regions. The halo circular assembly coils induced the highest EFs in deep brain regions (up to 50% of the maximum EF in the cortex) for optimized positioning. In terms of the trade-off between field spread and penetration, the performance of the H7 coil was the best. The computational model allowed the optimization of generalized dTMS-induced EF on deep region targets despite inter-individual differences while informing and possibly minimizing unintended stimulation of superficial regions and possible mixed stimulation effects from deep and cortical areas. These results will facilitate the decision process during dTMS interventions in clinical practice.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGomez-Tames, J, Hamasaka, A, Hirata, A, Laakso, I, Lu, M & Ueno, S 2020, ' Group-level analysis of induced electric field in deep brain regions by different TMS coils ', Physics in Medicine and Biology, vol. 65, no. 2, 025007 . https://doi.org/10.1088/1361-6560/ab5e4aen
dc.identifier.doi10.1088/1361-6560/ab5e4aen_US
dc.identifier.issn0031-9155
dc.identifier.issn1361-6560
dc.identifier.otherPURE UUID: 20c72b89-afd5-49bc-aac5-dcb656ef61d0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/20c72b89-afd5-49bc-aac5-dcb656ef61d0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85076497706&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/56892427/ELEC_Gomez_Tames_etal_Group_Level_Analysis_PhysMedBio_2020_acceptedauthormanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103157
dc.identifier.urnURN:NBN:fi:aalto-202103222435
dc.language.isoenen
dc.publisherInstitute of Physics Publishing
dc.relation.ispartofseriesPhysics in Medicine and Biologyen
dc.relation.ispartofseriesVolume 65, issue 2en
dc.rightsopenAccessen
dc.subject.keywordDeep transcranial magnetic simulationen_US
dc.subject.keywordGroup-levelen_US
dc.subject.keywordElectric fielden_US
dc.subject.keywordAnatomical human head modelen_US
dc.subject.keywordDeep brain regionsen_US
dc.titleGroup-level analysis of induced electric field in deep brain regions by different TMS coilsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files