Machine learning of dissection photographs and surface scanning for quantitative 3D neuropathology

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGazula, Harshvardhanen_US
dc.contributor.authorTregidgo, Henry F.J.en_US
dc.contributor.authorBillot, Benjaminen_US
dc.contributor.authorBalbastre, Yaelen_US
dc.contributor.authorWilliams-Ramirez, Jonathanen_US
dc.contributor.authorHerisse, Rogenyen_US
dc.contributor.authorDeden-Binder, Lucas J.en_US
dc.contributor.authorCasamitjana, Adriaen_US
dc.contributor.authorMelief, Erica J.en_US
dc.contributor.authorLatimer, Caitlin S.en_US
dc.contributor.authorKilgore, Mitchell D.en_US
dc.contributor.authorMontine, Marken_US
dc.contributor.authorRobinson, Eleanoren_US
dc.contributor.authorBlackburn, Emilyen_US
dc.contributor.authorMarshall, Michael S.en_US
dc.contributor.authorConnors, Theresa R.en_US
dc.contributor.authorOakley, Derek H.en_US
dc.contributor.authorFrosch, Matthew P.en_US
dc.contributor.authorYoung, Sean I.en_US
dc.contributor.authorVan Leemput, Koenen_US
dc.contributor.authorDalca, Adrian V.en_US
dc.contributor.authorFischl, Bruceen_US
dc.contributor.authorMacDonald, Christine L.en_US
dc.contributor.authorKeene, C. Dirken_US
dc.contributor.authorHyman, Bradley T.en_US
dc.contributor.authorIglesias, Juan E.en_US
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationHarvard Medical Schoolen_US
dc.contributor.organizationUniversity College Londonen_US
dc.contributor.organizationMassachusetts Institute of Technologyen_US
dc.contributor.organizationUniversity of Washingtonen_US
dc.date.accessioned2024-08-06T07:33:58Z
dc.date.available2024-08-06T07:33:58Z
dc.date.issued2024-06-19en_US
dc.descriptionPublisher Copyright: © 2023, Gazula et al.
dc.description.abstractWe present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).en
dc.description.versionPeer revieweden
dc.format.extent23
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGazula, H, Tregidgo, H F J, Billot, B, Balbastre, Y, Williams-Ramirez, J, Herisse, R, Deden-Binder, L J, Casamitjana, A, Melief, E J, Latimer, C S, Kilgore, M D, Montine, M, Robinson, E, Blackburn, E, Marshall, M S, Connors, T R, Oakley, D H, Frosch, M P, Young, S I, Van Leemput, K, Dalca, A V, Fischl, B, MacDonald, C L, Keene, C D, Hyman, B T & Iglesias, J E 2024, 'Machine learning of dissection photographs and surface scanning for quantitative 3D neuropathology', eLife, vol. 12, RP91398, pp. 1-23. https://doi.org/10.7554/eLife.91398en
dc.identifier.doi10.7554/eLife.91398en_US
dc.identifier.issn2050-084X
dc.identifier.otherPURE UUID: 2b159ae4-eb21-4f7a-bf8b-1c5234ad6502en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2b159ae4-eb21-4f7a-bf8b-1c5234ad6502en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/150309676/Machine_learning_of_dissection_photographs_and_surface_scanning_for_quantitative_3D_neuropathology.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/129626
dc.identifier.urnURN:NBN:fi:aalto-202408065199
dc.language.isoenen
dc.publishereLife Sciences Publications, Ltd
dc.relation.ispartofserieseLifeen
dc.relation.ispartofseriesVolume 12, pp. 1-23en
dc.rightsopenAccessen
dc.subject.keyworddissection photographyen_US
dc.subject.keywordhumanen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordneuroscienceen_US
dc.subject.keywordsurface scanningen_US
dc.subject.keywordvolumetryen_US
dc.titleMachine learning of dissection photographs and surface scanning for quantitative 3D neuropathologyen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files