Embarrassingly Parallel GFlowNets

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorda Silva, Tiagoen_US
dc.contributor.authorCarvalho, Luis Maxen_US
dc.contributor.authorSouza, Amaurien_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.authorMesquita, Diegoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorSalakhutdinov, Ruslanen_US
dc.contributor.editorKolter, Zicoen_US
dc.contributor.editorHeller, Katherineen_US
dc.contributor.editorWeller, Adrianen_US
dc.contributor.editorOliver, Nuriaen_US
dc.contributor.editorScarlett, Jonathanen_US
dc.contributor.editorBerkenkamp, Felixen_US
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationGetulio Vargas Foundationen_US
dc.date.accessioned2024-08-28T08:56:04Z
dc.date.available2024-08-28T08:56:04Z
dc.date.issued2024en_US
dc.description| openaire: EC/H2020/951847/EU//ELISE
dc.description.abstractGFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form R(⋅)∝R1(⋅)...RN(⋅) — e.g., in parallel or federated Bayes, where each Rn is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each Rn and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdf
dc.identifier.citationda Silva, T, Carvalho, L M, Souza, A, Kaski, S & Mesquita, D 2024, Embarrassingly Parallel GFlowNets. in R Salakhutdinov, Z Kolter, K Heller, A Weller, N Oliver, J Scarlett & F Berkenkamp (eds), Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 235, JMLR, pp. 45406-45431, International Conference on Machine Learning, Vienna, Austria, 21/07/2024. < https://arxiv.org/abs/2406.03288 >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: e85da1eb-b2ad-43d9-bd18-4d069d1efc6cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e85da1eb-b2ad-43d9-bd18-4d069d1efc6cen_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2406.03288en_US
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v235/silva24a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/185021274/Embarrassingly_Parallel_GFlowNets.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/130459
dc.identifier.urnURN:NBN:fi:aalto-202408286020
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/951847/EU//ELISEen_US
dc.relation.ispartofInternational Conference on Machine Learningen
dc.relation.ispartofseriesProceedings of the 41st International Conference on Machine Learningen
dc.relation.ispartofseriespp. 45406-45431en
dc.relation.ispartofseriesProceedings of Machine Learning Research ; Volume 235en
dc.rightsopenAccessen
dc.titleEmbarrassingly Parallel GFlowNetsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files