Embarrassingly Parallel GFlowNets
| dc.contributor | Aalto-yliopisto | fi |
| dc.contributor | Aalto University | en |
| dc.contributor.author | da Silva, Tiago | en_US |
| dc.contributor.author | Carvalho, Luis Max | en_US |
| dc.contributor.author | Souza, Amauri | en_US |
| dc.contributor.author | Kaski, Samuel | en_US |
| dc.contributor.author | Mesquita, Diego | en_US |
| dc.contributor.department | Department of Computer Science | en |
| dc.contributor.editor | Salakhutdinov, Ruslan | en_US |
| dc.contributor.editor | Kolter, Zico | en_US |
| dc.contributor.editor | Heller, Katherine | en_US |
| dc.contributor.editor | Weller, Adrian | en_US |
| dc.contributor.editor | Oliver, Nuria | en_US |
| dc.contributor.editor | Scarlett, Jonathan | en_US |
| dc.contributor.editor | Berkenkamp, Felix | en_US |
| dc.contributor.groupauthor | Probabilistic Machine Learning | en |
| dc.contributor.groupauthor | Professorship Kaski Samuel | en |
| dc.contributor.groupauthor | Computer Science Professors | en |
| dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
| dc.contributor.groupauthor | Finnish Center for Artificial Intelligence, FCAI | en |
| dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
| dc.contributor.organization | Getulio Vargas Foundation | en_US |
| dc.date.accessioned | 2024-08-28T08:56:04Z | |
| dc.date.available | 2024-08-28T08:56:04Z | |
| dc.date.issued | 2024 | en_US |
| dc.description | | openaire: EC/H2020/951847/EU//ELISE | |
| dc.description.abstract | GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form R(⋅)∝R1(⋅)...RN(⋅) — e.g., in parallel or federated Bayes, where each Rn is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each Rn and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning. | en |
| dc.description.version | Peer reviewed | en |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | da Silva, T, Carvalho, L M, Souza, A, Kaski, S & Mesquita, D 2024, Embarrassingly Parallel GFlowNets. in R Salakhutdinov, Z Kolter, K Heller, A Weller, N Oliver, J Scarlett & F Berkenkamp (eds), Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 235, JMLR, pp. 45406-45431, International Conference on Machine Learning, Vienna, Austria, 21/07/2024. < https://arxiv.org/abs/2406.03288 > | en |
| dc.identifier.issn | 2640-3498 | |
| dc.identifier.other | PURE UUID: e85da1eb-b2ad-43d9-bd18-4d069d1efc6c | en_US |
| dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/e85da1eb-b2ad-43d9-bd18-4d069d1efc6c | en_US |
| dc.identifier.other | PURE LINK: https://arxiv.org/abs/2406.03288 | en_US |
| dc.identifier.other | PURE LINK: https://proceedings.mlr.press/v235/silva24a.html | en_US |
| dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/185021274/Embarrassingly_Parallel_GFlowNets.pdf | |
| dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/130459 | |
| dc.identifier.urn | URN:NBN:fi:aalto-202408286020 | |
| dc.language.iso | en | en |
| dc.relation | info:eu-repo/grantAgreement/EC/H2020/951847/EU//ELISE | en_US |
| dc.relation.ispartof | International Conference on Machine Learning | en |
| dc.relation.ispartofseries | Proceedings of the 41st International Conference on Machine Learning | en |
| dc.relation.ispartofseries | pp. 45406-45431 | en |
| dc.relation.ispartofseries | Proceedings of Machine Learning Research ; Volume 235 | en |
| dc.rights | openAccess | en |
| dc.title | Embarrassingly Parallel GFlowNets | en |
| dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
| dc.type.version | publishedVersion |