Free and open source software for computational chemistry education
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A2 Katsausartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2022-09
Major/Subject
Mcode
Degree programme
Language
en
Pages
33
Series
Wiley Interdisciplinary Reviews: Computational Molecular Science, Volume 12, issue 5
Abstract
After decades of waiting, computational chemistry for the masses is finally here. Our brief review on free and open source software (FOSS) packages points out the existence of software offering a wide range of functionality, all the way from approximate semiempirical calculations with tight-binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, covering both molecular and solid-state systems. Combined with the remarkable increase in the computing power of personal devices, which now rivals that of the fastest supercomputers in the world in the 1990s, we demonstrate that a decentralized model for teaching computational chemistry is now possible thanks to FOSS packages, enabling students to perform reasonable modeling on their own computing devices in the bring your own device (BYOD) scheme. FOSS software can be made trivially simple to install and keep up to date, eliminating the need for departmental support, and also enables comprehensive teaching strategies, as various algorithms' actual implementations can be used in teaching. We exemplify what kinds of calculations are feasible with four FOSS electronic structure programs, assuming only extremely modest computational resources, to illustrate how FOSS packages enable decentralized approaches to computational chemistry education within the BYOD scheme. FOSS also has further benefits driving its adoption: the open access to the source code of FOSS packages democratizes the science of computational chemistry, and FOSS packages can be used without limitation also beyond education, in academic and industrial applications, for example. This article is categorized under: Software > Quantum Chemistry.Description
Publisher Copyright: © 2022 The Authors. WIREs Computational Molecular Science published by Wiley Periodicals LLC.
Keywords
computational chemistry education, free software, open source
Other note
Citation
Lehtola, S & Karttunen, A J 2022, ' Free and open source software for computational chemistry education ', Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 12, no. 5, e1610 . https://doi.org/10.1002/wcms.1610