Pre-trained Models for Detection and Severity Level Classification of Dysarthria from Speech

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

Speech Communication, Volume 158

Abstract

Automatic detection and severity level classification of dysarthria from speech enables noninvasive and effective diagnosis that helps clinical decisions about medication and therapy of patients. In this work, three pre-trained models (wav2vec2-BASE, wav2vec2-LARGE, and HuBERT) are studied to extract features to build automatic detection and severity level classification systems for dysarthric speech. The experiments were conducted using two publicly available databases (UA-Speech and TORGO). One machine learning-based model (support vector machine, SVM) and one deep learning-based model (convolutional neural network, CNN) was used as the classifier. In order to compare the performance of the wav2vec2-BASE, wav2vec2-LARGE, and HuBERT features, three popular acoustic feature sets, namely, mel-frequency cepstral coefficients (MFCCs), openSMILE and extended Geneva minimalistic acoustic parameter set (eGeMAPS) were considered. Experimental results revealed that the features derived from the pre-trained models outperformed the three baseline features. It was also found that the HuBERT features performed better than the wav2vec2-BASE and wav2vec2-LARGE features. In particular, when compared to the best-performing baseline feature (openSMILE), the HuBERT features showed in the detection problem absolute accuracy improvements that varied between 1.33% (the SVM classifier, the TORGO database) and 2.86% (the SVM classifier, the UA-Speech database). In the severity level classification problem, the HuBERT features showed absolute accuracy improvements that varied between 6.54% (the SVM classifier, the TORGO database) and 10.46% (the SVM classifier, the UA-Speech database) compared to the best-performing baseline feature (eGeMAPS).

Description

Other note

Citation

Javanmardi, F, Kadiri, S & Alku, P 2024, 'Pre-trained Models for Detection and Severity Level Classification of Dysarthria from Speech', Speech Communication, vol. 158, 103047. https://doi.org/10.1016/j.specom.2024.103047