Revisiting mass-radius relationships for exoplanet populations : a machine learning insight

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMousavi-Sadr, M.en_US
dc.contributor.authorJassur, D. M.en_US
dc.contributor.authorGozaliasl, G.en_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationUniversity of Tabrizen_US
dc.date.accessioned2023-10-18T06:53:07Z
dc.date.available2023-10-18T06:53:07Z
dc.date.issued2023-11-01en_US
dc.descriptionPublisher Copyright: © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
dc.description.abstractThe growing number of exoplanet discoveries and advances in machine learning techniques have opened new avenues for exploring and understanding the characteristics of worlds beyond our Solar system. In this study, we employ efficient machine learning approaches to analyse a data set comprising 762 confirmed exoplanets and eight Solar system planets, aiming to characterize their fundamental quantities. By applying different unsupervised clustering algorithms, we classify the data into two main classes: 'small' and 'giant' planets, with cut-off values at Rp = 8.13R and Mp = 52.48M. This classification reveals an intriguing distinction: giant planets have lower densities, suggesting higher H-He mass fractions, while small planets are denser, composed mainly of heavier elements. We apply various regression models to uncover correlations between physical parameters and their predictive power for exoplanet radius. Our analysis highlights that planetary mass, orbital period, and stellar mass play crucial roles in predicting exoplanet radius. Among the models evaluated, the Support Vector Regression consistently outperforms others, demonstrating its promise for obtaining accurate planetary radius estimates. Furthermore, we derive parametric equations using the M5P and Markov Chain Monte Carlo methods. Notably, our study reveals a noteworthy result: small planets exhibit a positive linear mass-radius relation, aligning with previous findings. Conversely, for giant planets, we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights into the relationship between giant planet formation and stellar characteristics.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMousavi-Sadr, M, Jassur, D M & Gozaliasl, G 2023, 'Revisiting mass-radius relationships for exoplanet populations : a machine learning insight', Monthly Notices of the Royal Astronomical Society, vol. 525, no. 3, pp. 3469-3485. https://doi.org/10.1093/mnras/stad2506en
dc.identifier.doi10.1093/mnras/stad2506en_US
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.otherPURE UUID: 69069041-f833-4a79-a64b-297fdd1119e2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/69069041-f833-4a79-a64b-297fdd1119e2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85172693657&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/124460147/Revisiting_mass_radius_relationships_for_exoplanet_populations.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124170
dc.identifier.urnURN:NBN:fi:aalto-202310186519
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesMonthly Notices of the Royal Astronomical Societyen
dc.relation.ispartofseriesVolume 525, issue 3, pp. 3469-3485en
dc.rightsopenAccessen
dc.subject.keywordplanets and satellites: compositionen_US
dc.subject.keywordplanets and satellites: dynamical evolution and stabilityen_US
dc.subject.keywordplanets and satellites: formationen_US
dc.subject.keywordplanets and satellites: fundamental parametersen_US
dc.subject.keywordplanets and satellites: generalen_US
dc.subject.keywordsoftware: data analysisen_US
dc.titleRevisiting mass-radius relationships for exoplanet populations : a machine learning insighten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files