A Unified Review of Deep Learning for Automated Medical Coding

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJi, Shaoxiong
dc.contributor.authorLi, Xiaobo
dc.contributor.authorSun, Wei
dc.contributor.authorDong, Hang
dc.contributor.authorTaalas, Ara
dc.contributor.authorZhang, Yijia
dc.contributor.authorWu, Honghan
dc.contributor.authorPitkänen, Esa
dc.contributor.authorMarttinen, Pekka
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.organizationDepartment of Computer Science
dc.contributor.organizationDalian Maritime University
dc.contributor.organizationKU Leuven
dc.contributor.organizationUniversity of Exeter
dc.contributor.organizationUniversity of Helsinki
dc.contributor.organizationUniversity of Glasgow
dc.date.accessioned2024-11-06T06:21:42Z
dc.date.available2024-11-06T06:21:42Z
dc.date.issued2024-10-01
dc.descriptionPublisher Copyright: © 2024 Copyright held by the owner/author(s).
dc.description.abstractAutomated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have been widely applied to this task. However, deep learning-based medical coding lacks a unified view of the design of neural network architectures. This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models and summarizes recent advanced models under the proposed framework. Our unified framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges and future directions.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdf
dc.identifier.citationJi, S, Li, X, Sun, W, Dong, H, Taalas, A, Zhang, Y, Wu, H, Pitkänen, E & Marttinen, P 2024, 'A Unified Review of Deep Learning for Automated Medical Coding', ACM Computing Surveys, vol. 56, no. 12, 306. https://doi.org/10.1145/3664615en
dc.identifier.doi10.1145/3664615
dc.identifier.issn0360-0300
dc.identifier.issn1557-7341
dc.identifier.otherPURE UUID: b94a9a71-ca1c-4ba8-b762-631859e7b0b4
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b94a9a71-ca1c-4ba8-b762-631859e7b0b4
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85204744629&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/163111073/SCI_Ji_etal_ACM_Computing_Surveys_2024.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131529
dc.identifier.urnURN:NBN:fi:aalto-202411067045
dc.language.isoenen
dc.publisherACM
dc.relation.ispartofseriesACM Computing Surveysen
dc.relation.ispartofseriesVolume 56, issue 12en
dc.rightsopenAccessen
dc.subject.keyworddeep learning
dc.subject.keywordMedical coding
dc.subject.keywordunified framework
dc.titleA Unified Review of Deep Learning for Automated Medical Codingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files