Non-stationary multi-layered Gaussian priors for Bayesian inversion

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorEmzir, Muhammaden_US
dc.contributor.authorLasanen, Sarien_US
dc.contributor.authorPurisha, Zenithen_US
dc.contributor.authorRoininen, Lassien_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.contributor.organizationUniversity of Ouluen_US
dc.contributor.organizationLUT Universityen_US
dc.date.accessioned2021-01-25T10:16:55Z
dc.date.available2021-01-25T10:16:55Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2021-12-03en_US
dc.date.issued2020-12-03en_US
dc.description.abstractIn this article, we study Bayesian inverse problems with multi-layered Gaussian priors. The aim of the multi-layered hierarchical prior is to provide enough complexity structure to allow for both smoothing and edge-preserving properties at the same time. We first describe the conditionally Gaussian layers in terms of a system of stochastic partial differential equations. We then build the computational inference method using a finite-dimensional Galerkin method. We show that the proposed approximation has a convergence-in-probability property to the solution of the original multi-layered model. We then carry out Bayesian inference using the preconditioned Crank-Nicolson algorithm which is modified to work with multi-layered Gaussian fields. We show via numerical experiments in signal deconvolution and computerized x-ray tomography problems that the proposed method can offer both smoothing and edge preservation at the same time.en
dc.description.versionPeer revieweden
dc.format.extent26
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationEmzir, M, Lasanen, S, Purisha, Z, Roininen, L & Särkkä, S 2020, 'Non-stationary multi-layered Gaussian priors for Bayesian inversion', Inverse Problems, vol. 37, no. 1, 015002. https://doi.org/10.1088/1361-6420/abc962en
dc.identifier.doi10.1088/1361-6420/abc962en_US
dc.identifier.issn0266-5611
dc.identifier.issn1361-6420
dc.identifier.otherPURE UUID: bec73e28-22a9-4255-9ab7-78c8c06bc834en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bec73e28-22a9-4255-9ab7-78c8c06bc834en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/55382950/ELEC_Emzir_etal_Non_stationary_multi_layered_InverseProblems_2020_acceptedauthormanuscript.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/102242
dc.identifier.urnURN:NBN:fi:aalto-202101251552
dc.language.isoenen
dc.publisherInstitute of Physics Publishing
dc.relation.fundinginfoThe authors would like to thank Academy of Finland for financial support (application numbers: 326240, 326341, 334816, 321891, 321900, and 314474).
dc.relation.ispartofseriesInverse Problemsen
dc.relation.ispartofseriesVolume 37, issue 1en
dc.rightsopenAccessen
dc.subject.keywordBayesian inverse problemen_US
dc.subject.keywordInverse problemen_US
dc.subject.keywordMulti-layer Gaussian field priorsen_US
dc.titleNon-stationary multi-layered Gaussian priors for Bayesian inversionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files