Non-stationary multi-layered Gaussian priors for Bayesian inversion
| dc.contributor | Aalto-yliopisto | fi |
| dc.contributor | Aalto University | en |
| dc.contributor.author | Emzir, Muhammad | en_US |
| dc.contributor.author | Lasanen, Sari | en_US |
| dc.contributor.author | Purisha, Zenith | en_US |
| dc.contributor.author | Roininen, Lassi | en_US |
| dc.contributor.author | Särkkä, Simo | en_US |
| dc.contributor.department | Department of Electrical Engineering and Automation | en |
| dc.contributor.groupauthor | Sensor Informatics and Medical Technology | en |
| dc.contributor.organization | University of Oulu | en_US |
| dc.contributor.organization | LUT University | en_US |
| dc.date.accessioned | 2021-01-25T10:16:55Z | |
| dc.date.available | 2021-01-25T10:16:55Z | |
| dc.date.embargo | info:eu-repo/date/embargoEnd/2021-12-03 | en_US |
| dc.date.issued | 2020-12-03 | en_US |
| dc.description.abstract | In this article, we study Bayesian inverse problems with multi-layered Gaussian priors. The aim of the multi-layered hierarchical prior is to provide enough complexity structure to allow for both smoothing and edge-preserving properties at the same time. We first describe the conditionally Gaussian layers in terms of a system of stochastic partial differential equations. We then build the computational inference method using a finite-dimensional Galerkin method. We show that the proposed approximation has a convergence-in-probability property to the solution of the original multi-layered model. We then carry out Bayesian inference using the preconditioned Crank-Nicolson algorithm which is modified to work with multi-layered Gaussian fields. We show via numerical experiments in signal deconvolution and computerized x-ray tomography problems that the proposed method can offer both smoothing and edge preservation at the same time. | en |
| dc.description.version | Peer reviewed | en |
| dc.format.extent | 26 | |
| dc.format.mimetype | application/pdf | en_US |
| dc.identifier.citation | Emzir, M, Lasanen, S, Purisha, Z, Roininen, L & Särkkä, S 2020, 'Non-stationary multi-layered Gaussian priors for Bayesian inversion', Inverse Problems, vol. 37, no. 1, 015002. https://doi.org/10.1088/1361-6420/abc962 | en |
| dc.identifier.doi | 10.1088/1361-6420/abc962 | en_US |
| dc.identifier.issn | 0266-5611 | |
| dc.identifier.issn | 1361-6420 | |
| dc.identifier.other | PURE UUID: bec73e28-22a9-4255-9ab7-78c8c06bc834 | en_US |
| dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/bec73e28-22a9-4255-9ab7-78c8c06bc834 | en_US |
| dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/55382950/ELEC_Emzir_etal_Non_stationary_multi_layered_InverseProblems_2020_acceptedauthormanuscript.pdf | |
| dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/102242 | |
| dc.identifier.urn | URN:NBN:fi:aalto-202101251552 | |
| dc.language.iso | en | en |
| dc.publisher | Institute of Physics Publishing | |
| dc.relation.fundinginfo | The authors would like to thank Academy of Finland for financial support (application numbers: 326240, 326341, 334816, 321891, 321900, and 314474). | |
| dc.relation.ispartofseries | Inverse Problems | en |
| dc.relation.ispartofseries | Volume 37, issue 1 | en |
| dc.rights | openAccess | en |
| dc.subject.keyword | Bayesian inverse problem | en_US |
| dc.subject.keyword | Inverse problem | en_US |
| dc.subject.keyword | Multi-layer Gaussian field priors | en_US |
| dc.title | Non-stationary multi-layered Gaussian priors for Bayesian inversion | en |
| dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
| dc.type.version | acceptedVersion |