Random Hermitian matrices and Gaussian multiplicative chaos

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

87

Series

Probability Theory and Related Fields, Volume 172, issue 1-2, pp. 103-189

Abstract

We prove that when suitably normalized, small enough powers of the absolute value of the characteristic polynomial of random Hermitian matrices, drawn from one-cut regular unitary invariant ensembles, converge in law to Gaussian multiplicative chaos measures. We prove this in the so-called (Formula presented.)-phase of multiplicative chaos. Our main tools are asymptotics of Hankel determinants with Fisher–Hartwig singularities. Using Riemann–Hilbert methods, we prove a rather general Fisher–Hartwig formula for one-cut regular unitary invariant ensembles.

Description

Keywords

Other note

Citation

Berestycki, N, Webb, C & Wong, M D 2018, 'Random Hermitian matrices and Gaussian multiplicative chaos', Probability Theory and Related Fields, vol. 172, no. 1-2, pp. 103-189. https://doi.org/10.1007/s00440-017-0806-9