Likelihood-free inference via classification

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGutmann, Michael U.en_US
dc.contributor.authorDutta, Ritabrataen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.authorCorander, Jukkaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.date.accessioned2017-03-28T12:14:23Z
dc.date.available2017-03-28T12:14:23Z
dc.date.issued2018en_US
dc.description.abstractIncreasingly complex generative models are being used across disciplines as they allow for realistic characterization of data, but a common difficulty with them is the prohibitively large computational cost to evaluate the likelihood function and thus to perform likelihood-based statistical inference. A likelihood-free inference framework has emerged where the parameters are identified by finding values that yield simulated data resembling the observed data. While widely applicable, a major difficulty in this framework is how to measure the discrepancy between the simulated and observed data. Transforming the original problem into a problem of classifying the data into simulated versus observed, we find that classification accuracy can be used to assess the discrepancy. The complete arsenal of classification methods becomes thereby available for inference of intractable generative models. We validate our approach using theory and simulations for both point estimation and Bayesian inference, and demonstrate its use on real data by inferring an individual-based epidemiological model for bacterial infections in child care centers.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.extent1-15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGutmann, M U, Dutta, R, Kaski, S & Corander, J 2018, ' Likelihood-free inference via classification ', STATISTICS AND COMPUTING, vol. 28, no. 2, pp. 411–425 . https://doi.org/10.1007/s11222-017-9738-6en
dc.identifier.doi10.1007/s11222-017-9738-6en_US
dc.identifier.issn0960-3174
dc.identifier.otherPURE UUID: fcf5de25-20a8-409a-8cb2-4b7ab6b67effen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fcf5de25-20a8-409a-8cb2-4b7ab6b67effen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85015068579&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/1407.4981en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/11411080/art_10.1007_s11222_017_9738_6.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25033
dc.identifier.urnURN:NBN:fi:aalto-201703283272
dc.language.isoenen
dc.relation.ispartofseriesSTATISTICS AND COMPUTINGen
dc.rightsopenAccessen
dc.subject.keywordApproximate Bayesian computationen_US
dc.subject.keywordGenerative modelsen_US
dc.subject.keywordIntractable likelihooden_US
dc.subject.keywordLatent variable modelsen_US
dc.subject.keywordSimulator-based modelsen_US
dc.titleLikelihood-free inference via classificationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files