Designing exotic phases of matter with magnetic van der Waals materials

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorChen, Guangze
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labCorrelated Quantum Materials (CQM) groupen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorLado, Jose L., Prof., Aalto University, Department of Applied Physics, Finland
dc.date.accessioned2023-06-14T09:00:12Z
dc.date.available2023-06-14T09:00:12Z
dc.date.defence2023-06-26
dc.date.issued2023
dc.description.abstractMagnetic van der Waals materials have recently emerged as a realization of quantum magnetism in two dimensions. They host a variety of phases including ferromagnets, anti-ferromagnets, helimagnets, and quantum spin liquids. The 2D nature of these materials makes them versatile platforms for quantum engineering. In this thesis, we explore via theoretical techniques how different quantum engineering methods allow to design and reveal exotic phases of matter in magnetic van der Waals materials. In particular, we will present three schemes. The first scheme focuses on external engineering on a 2D magnet to promote and identify the quantum spin liquid phase. The second scheme focuses on designing helical electronic states and heavy fermions via proximity to 2D magnets. The third scheme focuses on the utilization of the coupling of quantum magnets to the environment to design non-Hermitian many-body topological phases of matter. Our results put forward magnetic van der Waals materials as a versatile platform for engineering exotic phases of matter.en
dc.format.extent138 + app. 184
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-1299-3 (electronic)
dc.identifier.isbn978-952-64-1298-6 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/121483
dc.identifier.urnURN:ISBN:978-952-64-1299-3
dc.language.isoenen
dc.opnPeres, Nuno M.R., Prof., University of Minho, Portugal
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Guangze Chen, Jose L. Lado. Impurity-induced resonant spinon zero modes in Dirac quantum spin liquids. Physical Review Research, 2, 033466, September 2020. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202009255526. DOI: 10.1103/PhysRevResearch.2.033466
dc.relation.haspart[Publication 2]: Guangze Chen, Jose L. Lado. Tunable moire spinons in magnetically encapsulated twisted van der Waals quantum spin liquids. Physical Review Research, 3, 033276, September 2021. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202109299340. DOI: 10.1103/PhysRevResearch.3.033276
dc.relation.haspart[Publication 3]: Guangze Chen, Malte Rösner, Jose L. Lado. Controlling magnetic frustration in 1T-TaS2 via Coulomb engineered long-range interactions. Journal of Physics: Condensed Matter, 34, 485805, October 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202210266230. DOI: 10.1088/1361-648X/ac9812
dc.relation.haspart[Publication 4]: Guangze Chen, Maryam Khosravian, Jose L. Lado, Aline Ramires. Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation. 2D Materials, 9, 024002, February 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202205243410. DOI: 10.1088/2053-1583/ac4af8
dc.relation.haspart[Publication 5]: Viliam Vaňo, Mohammad Amini, Somesh C. Ganguli, Guangze Chen, Jose L. Lado, Shawulienu Kezilebieke and Peter Liljeroth. Artificial heavy fermions in a van der Waals heterostructure. Nature, 599, 582–586, November 2021. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-2021120110512. DOI: 10.1038/s41586-021-04021-0
dc.relation.haspart[Publication 6]: Guangze Chen, Fei Song, Jose L. Lado. Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Physical Review Letters, 130, 100401, March 2023. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202303152399. DOI: 10.1103/PhysRevLett.130.100401
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries84/2023
dc.revFischer, Dr. Mark H., University of Zurich, Switzerland
dc.revBaldovi, Jose J., Dr., ICMol, University of Valencia, Spain
dc.subject.keywordmagnetic van der Waals materialsen
dc.subject.keywordquantum spin liquidsen
dc.subject.keywordhelical statesen
dc.subject.keywordheavy-fermionsen
dc.subject.keywordnon-Hermitian physicsen
dc.subject.otherPhysicsen
dc.titleDesigning exotic phases of matter with magnetic van der Waals materialsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2023-06-27_1332
local.aalto.archiveyes
local.aalto.formfolder2023_06_14_klo_09_46
local.aalto.infraOtaNano
local.aalto.infraOtaNano - Low Temperature Laboratory
local.aalto.infraScience-IT

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526412993.pdf
Size:
72.59 MB
Format:
Adobe Portable Document Format