Autonomous overtaking maneuver under complex driving conditions
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.advisor | Görür, Orhan Can | |
dc.contributor.advisor | Aksjonov, Andrei | |
dc.contributor.author | Palatti, Jiyo | |
dc.contributor.school | Sähkötekniikan korkeakoulu | fi |
dc.contributor.supervisor | Albayrak, Sahin | |
dc.date.accessioned | 2021-03-21T18:00:24Z | |
dc.date.available | 2021-03-21T18:00:24Z | |
dc.date.issued | 2021-03-15 | |
dc.description.abstract | The thesis tackles the planning and control of autonomous overtaking and subsequent lane-keeping. While existing solutions attempt multi-lane overtaking involving simple and static scenarios, the focus here is on single-lane overtaking which requires minimal intrusion onto the adjacent lane in dynamically changing conditions. The method proposed utilizes a heuristic rule-based strategy to select optimal maneuvers and then uses a combination of safe and reachable sets to iteratively generate intermediate reference targets based on the desired maneuver. A nonlinear model predictive controller then plans dynamically feasible trajectories to these intermediate reference targets that avoid collisions. The proposed method was implemented and tested under 7 different scenarios that cover many complex lane-keeping and overtaking scenarios using the CARLA simulation engine with ROS (Robotic Operating System) framework for inter-component communication with model predictive controller developed using MATLAB. In every tested scenario, the proposed planning and control paradigm was able to select the best course of action (maneuver) and execute the same without collisions with other nearby vehicles. | en |
dc.format.extent | 68+2 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/103044 | |
dc.identifier.urn | URN:NBN:fi:aalto-202103212323 | |
dc.language.iso | en | en |
dc.location | P1 | fi |
dc.programme | Master's Programme in ICT Innovation | fi |
dc.programme.major | Autonomous Systems | fi |
dc.programme.mcode | ELEC3055 | fi |
dc.subject.keyword | intelligent control | en |
dc.subject.keyword | autonomous vehicles | en |
dc.subject.keyword | behaviour planning | en |
dc.subject.keyword | trajectory optimization | en |
dc.subject.keyword | predictive control | en |
dc.subject.keyword | overtaking | en |
dc.title | Autonomous overtaking maneuver under complex driving conditions | en |
dc.type | G2 Pro gradu, diplomityö | fi |
dc.type.ontasot | Master's thesis | en |
dc.type.ontasot | Diplomityö | fi |
local.aalto.electroniconly | yes | |
local.aalto.openaccess | yes |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- master_Palatti_Jiyo_2021.pdf
- Size:
- 5.4 MB
- Format:
- Adobe Portable Document Format