Autonomous overtaking maneuver under complex driving conditions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorGörür, Orhan Can
dc.contributor.advisorAksjonov, Andrei
dc.contributor.authorPalatti, Jiyo
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.supervisorAlbayrak, Sahin
dc.date.accessioned2021-03-21T18:00:24Z
dc.date.available2021-03-21T18:00:24Z
dc.date.issued2021-03-15
dc.description.abstractThe thesis tackles the planning and control of autonomous overtaking and subsequent lane-keeping. While existing solutions attempt multi-lane overtaking involving simple and static scenarios, the focus here is on single-lane overtaking which requires minimal intrusion onto the adjacent lane in dynamically changing conditions. The method proposed utilizes a heuristic rule-based strategy to select optimal maneuvers and then uses a combination of safe and reachable sets to iteratively generate intermediate reference targets based on the desired maneuver. A nonlinear model predictive controller then plans dynamically feasible trajectories to these intermediate reference targets that avoid collisions. The proposed method was implemented and tested under 7 different scenarios that cover many complex lane-keeping and overtaking scenarios using the CARLA simulation engine with ROS (Robotic Operating System) framework for inter-component communication with model predictive controller developed using MATLAB. In every tested scenario, the proposed planning and control paradigm was able to select the best course of action (maneuver) and execute the same without collisions with other nearby vehicles.en
dc.format.extent68+2
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103044
dc.identifier.urnURN:NBN:fi:aalto-202103212323
dc.language.isoenen
dc.locationP1fi
dc.programmeMaster's Programme in ICT Innovationfi
dc.programme.majorAutonomous Systemsfi
dc.programme.mcodeELEC3055fi
dc.subject.keywordintelligent controlen
dc.subject.keywordautonomous vehiclesen
dc.subject.keywordbehaviour planningen
dc.subject.keywordtrajectory optimizationen
dc.subject.keywordpredictive controlen
dc.subject.keywordovertakingen
dc.titleAutonomous overtaking maneuver under complex driving conditionsen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessyes
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_Palatti_Jiyo_2021.pdf
Size:
5.4 MB
Format:
Adobe Portable Document Format