Andreev Reflection and Klein Tunneling in High-Temperature Superconductor-Graphene Junctions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJois, Sharadhen_US
dc.contributor.authorLado, Joseen_US
dc.contributor.authorGu, Gendaen_US
dc.contributor.authorLi, Qiangen_US
dc.contributor.authorLee, Ji Ungen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCorrelated Quantum Materials (CQM)en
dc.contributor.organizationState University of New York Polytechnic Instituteen_US
dc.contributor.organizationBrookhaven National Laboratoryen_US
dc.date.accessioned2023-04-26T08:39:07Z
dc.date.available2023-04-26T08:39:07Z
dc.date.issued2023-04-12en_US
dc.descriptionThis work was supported by funding from the U.S. Naval Research Laboratory Grant No. N00173-19-1-G0008. J. L. L. acknowledges the computational resources provided by the Aalto Science-IT project and the financial support from the Academy of Finland Projects No. 331342 and No. 336243. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy (DOE) the Office of Basic Energy Sciences, Materials Sciences, and Engineering Division under Contract No. DESC0012704.
dc.description.abstractScattering processes in quantum materials emerge as resonances in electronic transport, including confined modes, Andreev states, and Yu-Shiba-Rusinov states. However, in most instances, these resonances are driven by a single scattering mechanism. Here, we show the appearance of resonances due to the combination of two simultaneous scattering mechanisms, one from superconductivity and the other from graphene p−n junctions. These resonances stem from Andreev reflection and Klein tunneling that occur at two different interfaces of a hole-doped region of graphene formed at the boundary with superconducting graphene due to proximity effects from Bi2Sr2Ca1Cu2O8+δ. The resonances persist with gating from p+−p and p−n configurations. The suppression of the oscillation amplitude above the bias energy which is comparable to the induced superconducting gap indicates the contribution from Andreev reflection. Our experimental measurements are supported by quantum transport calculations in such interfaces, leading to analogous resonances. Our results put forward a hybrid scattering mechanism in graphene–high-temperature superconductor heterojunctions of potential impact for graphene-based Josephson junctions.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.extent1-6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJois, S, Lado, J, Gu, G, Li, Q & Lee, J U 2023, ' Andreev Reflection and Klein Tunneling in High-Temperature Superconductor-Graphene Junctions ', Physical Review Letters, vol. 130, no. 15, 156201, pp. 1-6 . https://doi.org/10.1103/PhysRevLett.130.156201en
dc.identifier.doi10.1103/PhysRevLett.130.156201en_US
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.otherPURE UUID: 37b1c062-cd1c-4319-88f0-19406a803881en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/37b1c062-cd1c-4319-88f0-19406a803881en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85152891989&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/106422587/Andreev_Reflection_and_Klein_Tunneling_in_High_Temperature_Superconductor_Graphene_Junctions.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120516
dc.identifier.urnURN:NBN:fi:aalto-202304262838
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Lettersen
dc.relation.ispartofseriesVolume 130, issue 15en
dc.rightsopenAccessen
dc.titleAndreev Reflection and Klein Tunneling in High-Temperature Superconductor-Graphene Junctionsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files