Learning symmetry-aware atom mapping in chemical reactions through deep graph matching

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAstero, Maryamen_US
dc.contributor.authorRousu, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Large-scale Computing and Data Analysis (LSCA)en
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife)en
dc.contributor.groupauthorProfessorship Rousu Juhoen
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2024-05-22T05:53:59Z
dc.date.available2024-05-22T05:53:59Z
dc.date.issued2024-04-22en_US
dc.descriptionPublisher Copyright: © The Author(s) 2024.
dc.description.abstractAccurate atom mapping, which establishes correspondences between atoms in reactants and products, is a crucial step in analyzing chemical reactions. In this paper, we present a novel end-to-end approach that formulates the atom mapping problem as a deep graph matching task. Our proposed model, AMNet (Atom Matching Network), utilizes molecular graph representations and employs various atom and bond features using graph neural networks to capture the intricate structural characteristics of molecules, ensuring precise atom correspondence predictions. Notably, AMNet incorporates the consideration of molecule symmetry, enhancing accuracy while simultaneously reducing computational complexity. The integration of the Weisfeiler-Lehman isomorphism test for symmetry identification refines the model’s predictions. Furthermore, our model maps the entire atom set in a chemical reaction, offering a comprehensive approach beyond focusing solely on the main molecules in reactions. We evaluated AMNet’s performance on a subset of USPTO reaction datasets, addressing various tasks, including assessing the impact of molecular symmetry identification, understanding the influence of feature selection on AMNet performance, and comparing its performance with the state-of-the-art method. The result reveals an average accuracy of 97.3% on mapped atoms, with 99.7% of reactions correctly mapped when the correct mapped atom is within the top 10 predicted atoms. Scientific contribution The paper introduces a novel end-to-end deep graph matching model for atom mapping, utilizing molecular graph representations to capture structural characteristics effectively. It enhances accuracy by integrating symmetry detection through the Weisfeiler-Lehman test, reducing the number of possible mappings and improving efficiency. Unlike previous methods, it maps the entire reaction, not just main components, providing a comprehensive view. Additionally, by integrating efficient graph matching techniques, it reduces computational complexity, making atom mapping more feasible.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAstero, M & Rousu, J 2024, ' Learning symmetry-aware atom mapping in chemical reactions through deep graph matching ', Journal of Cheminformatics, vol. 16, no. 1, 46, pp. 1-14 . https://doi.org/10.1186/s13321-024-00841-0en
dc.identifier.doi10.1186/s13321-024-00841-0en_US
dc.identifier.issn1758-2946
dc.identifier.otherPURE UUID: c33371fc-1594-4445-878a-ec0324047005en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c33371fc-1594-4445-878a-ec0324047005en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85191089219&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/145980303/Learning_symmetry-aware_atom_mapping_in_chemical_reactions_through_deep_graph_matching.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127924
dc.identifier.urnURN:NBN:fi:aalto-202405223529
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesJOURNAL OF CHEMINFORMATICS
dc.relation.ispartofseriesVolume 16, issue 1, pp. 1-14
dc.rightsopenAccessen
dc.subject.keywordAtom mappingen_US
dc.subject.keywordDeep learningen_US
dc.subject.keywordGraph matchingen_US
dc.subject.keywordGraph representation learningen_US
dc.titleLearning symmetry-aware atom mapping in chemical reactions through deep graph matchingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files