Effective Energy Efficiency of Ultra-reliable Low Latency Communication
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-07-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
15
Series
IEEE Internet of Things Journal, Volume 8, issue 14, pp. 11135-11149
Abstract
Effective capacity (EC) defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between EC and power consumption. We analyze the EEE of ultrareliable networks operating in the finite-blocklength regime. We obtain a closed-form approximation for the EEE in quasistatic Nakagami- m (and Rayleigh as subcase) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the quality-of-service constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite-blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultrareliability using one transmission consumes a huge amount of power, which is not applicable for energy limited Internet-of-Things devices. In this context, accounting for empty buffer probability in machine-type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the nonempty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbach's algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.Description
Keywords
Delays, Effective energy efficiency, Error probability, finite blocklength, IoT, Measurement, optimal power allocation., Power demand, Reliability, Resource management, Ultra reliable low latency communication, URLLC
Other note
Citation
Shehab, M, Alves, H, Jorswieck, E A, Dosti, E & Latva-aho, M 2021, ' Effective Energy Efficiency of Ultra-reliable Low Latency Communication ', IEEE Internet of Things Journal, vol. 8, no. 14, 9328474, pp. 11135-11149 . https://doi.org/10.1109/JIOT.2021.3052965