Circuit theory of metal-enhanced fluorescence
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Simovski, Constantin R. | en_US |
dc.contributor.department | Department of Electronics and Nanoengineering | en |
dc.contributor.groupauthor | Kostantin Simovski Group | en |
dc.date.accessioned | 2019-09-03T13:48:19Z | |
dc.date.available | 2019-09-03T13:48:19Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2021-07-04 | en_US |
dc.date.issued | 2019-09-01 | en_US |
dc.description.abstract | Metal-enhanced fluorescence (MEF) comprises several linear phenomena which can be successfully described either by a classical theory or by a quantum one. Usually different phenomena are described by different classical models. Recently, an analytical model for a metal nanoantenna coupled to a quantum emitter was suggested that grants an approximate solution covering all basic linear phenomena observed in MEF from the Purcell effect to the fluorescent quenching. In this paper, the further development of this model is presented in terms of the equivalent circuits. The circuit model allows us to express the non-radiative Purcell factor of a nanoantenna through the previously evaluated radiative Purcell factor, to find the threshold of the fluorescence quenching and to determine the conditions when a fluorescent nanostructure transforms into a surface-plasmon laser (spaser). | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Simovski, C R 2019, ' Circuit theory of metal-enhanced fluorescence ', Photonics and Nanostructures - Fundamentals and Applications, vol. 36, 100712 . https://doi.org/10.1016/j.photonics.2019.100712 | en |
dc.identifier.doi | 10.1016/j.photonics.2019.100712 | en_US |
dc.identifier.issn | 1569-4410 | |
dc.identifier.issn | 1569-4429 | |
dc.identifier.other | PURE UUID: aebeeb77-ad83-4e68-94a4-ab56ad27fcc4 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/aebeeb77-ad83-4e68-94a4-ab56ad27fcc4 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85068387057&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/36230341/ELEC_Simovski_Circuit_theory_PhotoNano.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/40105 | |
dc.identifier.urn | URN:NBN:fi:aalto-201909035147 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Photonics and Nanostructures - Fundamentals and Applications | en |
dc.relation.ispartofseries | Volume 36 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Electromotive force | en_US |
dc.subject.keyword | Fluorescence quenching | en_US |
dc.subject.keyword | Increment | en_US |
dc.subject.keyword | Metal-enhanced fluorescence | en_US |
dc.subject.keyword | Mutual impedance | en_US |
dc.subject.keyword | Nanoantenna | en_US |
dc.subject.keyword | Negative resistance | en_US |
dc.subject.keyword | Purcell factor | en_US |
dc.subject.keyword | Quantum emitter | en_US |
dc.subject.keyword | Rabi oscillations | en_US |
dc.subject.keyword | Radiative resistance | en_US |
dc.subject.keyword | Resonant circuit | en_US |
dc.subject.keyword | Spaser | en_US |
dc.title | Circuit theory of metal-enhanced fluorescence | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |